Modeling Steel Frame Buildings in Three Dimensions. I: Panel Zone and Plastic Hinge Beam Elements
نویسندگان
چکیده
A procedure for efficient three-dimensional nonlinear time-history analysis of steel framed buildings is derived. It incorporates two types of nonlinear beam elements—the plastic hinge type and the elastofiber type—and nonlinear panel zone elements to model yielding and strain-hardening in moment-frames. Floors and roofs of buildings are modeled using 4-node elastic diaphragm elements. The procedure utilizes an iteration strategy applied to an implicit time-integration scheme to solve the nonlinear equations of motion at each time step. Geometric nonlinearity is included. An overview of the procedure and the theories for the panel zone and the plastic hinge elements are presented in this paper. The theory for the elastofiber element along with illustrative examples are presented in a companion paper. The plastic hinge beam element consists of two nodes at which biaxial flexural yielding is permitted, leading to the formation of plastic hinges. Elastic rotational springs are connected across the plastic hinge locations to model strain-hardening. Axial yielding is also permitted. The panel zone element consists of two orthogonal panels forming a cruciform section. Each panel may yield and strain-harden in shear. DOI: 10.1061/ ASCE 0733-9399 2006 132:4 345 CE Database subject headings: Framed structures; Steel frames; Nonlinear analysis; Plastic hinges; Beams; Earthquakes; Threedimensional analysis.
منابع مشابه
Modeling Steel Frame Buildings in Three Dimensions. II: Elastofiber Beam Element and Examples
This is the second of two papers describing a procedure for the three-dimensional nonlinear time-history analysis of steelframed buildings. An overview of the procedure and the theory for the panel zone element and the plastic hinge beam element are presented in part I. In this paper, the theory for an efficient new element for modeling beams and columns in steel frames called the elastofiber e...
متن کاملDeterioration Modeling of Steel Moment Resisting Frames Using Finite-Length Plastic Hinge Force-Based Beam-Column Elements
The use of empirically calibrated moment-rotation models that account for strength and stiffness deterioration of steel frame members is paramount in evaluating the performance of steel structures prone to collapse under seismic loading. These deterioration models are typically used as zero-length springs in a concentrated plasticity formulation; however, a calibration procedure is required whe...
متن کاملA Technique for Seismic Rehabilitation of Damaged Steel Moment Resisting Frames
Moment resisting frames as one of the conventional lateral load resisting systems in buildings suffer from some limitations including code limitations on minimum span-to-depth ratio to ensure the formation of plastic hinges with adequate length at beam ends. According to seismic codes, in ordinary steel moment resisting frames the minimum span-to-depth ratios should be limited to 5 and in speci...
متن کاملStatic and dynamic nonlinear analysis of steel frame with semi-rigid connections
One of the important issues in the study of steel frames is to find a suitable formulation for semi-rigid connections. In this paper, the explicit stiffness matrix for a two-dimensional beam-column element having end-flexibilities is derived. The effects of the lateral uniformly distributed load on the deflection are considered. Both tensile and compressive axial loads are also taken into accou...
متن کاملInvestigation of the Effects of Link Beam Length on the RC Frame Retrofitted with the Linked Column Frame System
This study investigates the effect of different link beam lengths in the Reinforced Concrete (RC) frame retrofitted with the Linked Column Frame (LCF) system. It also investigates the ratio of the link beam length (e) to the span length of the RC frame (L) from 0 to 1.5 for the 9 models of the RC frame retrofitted by the LCF system has been investigated. In addition, it studies the formation of...
متن کامل