The power stroke of myosin VI and the basis of reverse directionality.
نویسندگان
چکیده
Myosin VI supports movement toward the (-) end of actin filaments, despite sharing extensive sequence and structural homology with (+)-end-directed myosins. A class-specific stretch of amino acids inserted between the converter domain and the lever arm was proposed to provide the structural basis of directionality reversal. Indeed, the unique insert mediates a 120 degrees redirection of the lever arm in a crystal structure of the presumed poststroke conformation of myosin VI [Ménétrey J, Bahloul A, Wells AL, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2005) Nature 435:779-785]. However, this redirection alone is insufficient to account for the large (-)-end-directed stroke of a monomeric myosin VI construct. The underlying motion of the myosin VI converter domain must therefore differ substantially from the power stroke of (+)-end-directed myosins. To experimentally map out the motion of the converter domain and lever arm, we have generated a series of truncated myosin VI constructs and characterized the size and direction of the power stroke for each construct using dual-labeled gliding filament assays and optical trapping. Motors truncated near the end of the converter domain generate (+)-end-directed motion, whereas longer constructs move toward the (-) end. Our results directly demonstrate that the unique insert is required for directionality reversal, ruling out a large class of models in which the converter domain moves toward the (-) end. We suggest that the lever arm rotates approximately 180 degrees between pre- and poststroke conformations.
منابع مشابه
Engineered myosin VI motors reveal minimal structural determinants of directionality and processivity.
Myosins have diverse mechanical properties reflecting a range of cellular roles. A major challenge is to understand the structural basis for generating novel functions from a common motor core. Myosin VI (M6) is specialized for processive motion toward the (-) end of actin filaments. We have used engineered M6 motors to test and refine the "redirected power stroke" model for (-) end directional...
متن کاملThe unique insert at the end of the myosin VI motor is the sole determinant of directionality.
Myosin VI moves toward the pointed (minus) end of actin filaments, the reverse direction of other myosin classes. The myosin VI structure demonstrates that a unique insert at the end of the motor repositions its lever arm and is at least in part responsible for the reversal of directionality. However, it has been proposed that there must be additional modifications within the motor that contrib...
متن کاملThe post-rigor structure of myosin VI and implications for the recovery stroke.
Myosin VI has an unexpectedly large swing of its lever arm (powerstroke) that optimizes its unique reverse direction movement. The basis for this is an unprecedented rearrangement of the subdomain to which the lever arm is attached, referred to as the converter. It is unclear at what point(s) in the myosin VI ATPase cycle rearrangements in the converter occur, and how this would effect lever ar...
متن کاملMyosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach.
Myosin VI challenges the prevailing theory of how myosin motors move on actin: the lever arm hypothesis. While the reverse directionality and large powerstroke of myosin VI can be attributed to unusual properties of a subdomain of the motor (converter with a unique insert), these adaptations cannot account for the large step size on actin. Either the lever arm hypothesis needs modification, or ...
متن کاملThe unique insert in myosin VI is a structural calcium-calmodulin binding site.
Myosin VI contains an inserted sequence that is unique among myosin superfamily members and has been suggested to be a determinant of the reverse directionality and unusual motility of the motor. It is thought that each head of a two-headed myosin VI molecule binds one calmodulin (CaM) by means of a single "IQ motif". Using truncations of the myosin VI protein and electrospray ionization(ESI)-M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 3 شماره
صفحات -
تاریخ انتشار 2007