Adapting the Pheromone Evaporation Rate in Dynamic Routing Problems
نویسندگان
چکیده
Ant colony optimization (ACO) algorithms have proved to be able to adapt to dynamic optimization problems (DOPs) when stagnation behaviour is avoided. Several approaches have been integrated with ACO to improve its performance for DOPs. The adaptation capabilities of ACO rely on the pheromone evaporation mechanism, where the rate is usually fixed. Pheromone evaporation may eliminate pheromone trails that represent bad solutions from previous environments. In this paper, an adaptive scheme is proposed to vary the evaporation rate in different periods of the optimization process. The experimental results show that ACO with an adaptive pheromone evaporation rate achieves promising results, when compared with an ACO with a fixed pheromone evaporation rate, for different DOPs.
منابع مشابه
Ant Colony Optimization Based Modified Termite Algorithm (mta) with Efficient Stagnation Avoidance Strategy for Manets
Designing an effective load balancing algorithm is difficult due to Dynamic topology of MANET. To address the problem, a load balancing routing algorithm namely Modified Termite Algorithm (MTA) has been developed based on ant’s food foraging behavior. Stability of the link is determined based on node stability factor ‘∆’. The stability factor “∆ “of the node is the ratio defined between the “he...
متن کاملAn Improved Ant Colony Optimization Algorithm for Solving TSP
The basic ant colony optimization (ACO) algorithm takes on a longer computing time in the search process and is prone to fall into local optimal solutions, an improved ACO (CEULACO) algorithm is proposed in this paper. In the CEULAC algorithm, the direction guidance and real variable function are used to initialize pheromone concentration according to the path information of undirected graph. T...
متن کاملEfficient Stagnation Avoidance for Manets with Local Repair Strategy Using Ant Colony Optimization
Wireless networks such as Mobile AdHoc Networks (MANETs) have many advantages compared to wired networks. In MANETs the communication is not limited to a certain geometrical region. Swarm Intelligence based ACO algorithms provide interesting solutions to network routing problems. ACO based routing in MANETs will enhance the reliability and efficient packet delivery. They help in reducing contro...
متن کاملApplying Ant Colony Optimization to Dynamic Binary-Encoded Problems
Ant colony optimization (ACO) algorithms have proved to be able to adapt to dynamic optimization problems (DOPs) when stagnation behaviour is addressed. Usually, permutation-encoded DOPs, e.g., dynamic travelling salesman problems, are addressed using ACO algorithms whereas binary-encoded DOPs, e.g., dynamic knapsack problems, are tackled by evolutionary algorithms (EAs). This is because of the...
متن کاملAnt colony optimization for routing and load-balancing: survey and new directions
Although an ant is a simple creature, collectively a colony of ants performs useful tasks such as finding the shortest path to a food source and sharing this information with other ants by depositing pheromone. In the field of ant colony optimization (ACO), models of collective intelligence of ants are transformed into useful optimization techniques that find applications in computer networking...
متن کامل