Electrical evoked potentials prediction model in visual prostheses based on support vector regression with multiple weights
نویسندگان
چکیده
Electrical evoked potentials (EEPs) elicited by electrical stimuli to the optical nerve are an important study object in optical nerve visual prostheses to investigate the temporal property of responses of the visual cortex. Concentrating on reducing the cost of the visual prostheses research, this paper proposes an intelligent EEPs prediction model based on the support vector regression with multiple weights (SVR–MW) method in substitution of numerous biological experiments. In SVR–MW, to improve the predictive performance of traditional SVR, more temporal weights and similarity-based weights are given to the recent training data extracted from similar experimental cases for new electrical stimulus parameters than the distant data from less similar cases during regression estimation. For temporal weight (TW), we propose two TW functions i.e., linear temporal weight (LTW) function and exponential temporal weight (ETW) function to calculate the temporal weight of training sample at different time nodes. For similarity-based weight (SW), the similarity measurement (SM) is the key issue, and we adopt the multi-algorithm-oriented hybrid SM methods i.e., textual SM, numerical SM, interval SM and fuzzy SM to solve the SW computation for training data derived from different experimental cases. The proposed method was empirically tested with data collected from actual EEPs eliciting experiments. Empirical comparison shows that SVR–MW is feasible and validated for EEPs prediction in visual prostheses
منابع مشابه
Machine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملIntegration of similarity measurement and dynamic SVM for electrically evoked potentials prediction in visual prostheses research
Electrical evoked potentials (EEPs) time series prediction is a novel topic concentrating on reducing the cost of the visual prostheses research. Support vector machine (SVM), a superior neural network algorithm, is a powerful tool for time series forecasting but is insensitive to multivariate analysis. Meanwhile, similarity measurement (SM), a key technology in case-based reasoning, has been a...
متن کاملPredicting electrical evoked potential in optic nerve visual prostheses by using support vector regression and case-based prediction
Electrical evoked potential (EEP) forecasting is an intelligent time series prediction (TSP) activity to explore the temporal properties of electrically elicited responses of the visual cortex triggered by various electrical stimulations. Our previous studies used support vector regression (SVR) as a TSP predictor to forecast temporal EEP values. SVR shows high prediction performance but with h...
متن کاملThe Effect of Oral Verapamil on the Visual Evoked Potentials in Definite Multiple Sclerosis Patients
Introduction: Ionic channel rearrangements through the demyelinated axons or supporting media play significant role in remission of the neurological deficit in MS patients. In this study the effects of Verapamil as a calcium channel blocker on central conduction have been investigated through the evaluation of changes in P100 latency of the visual evoked potential. Method: This randomized doubl...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 11 شماره
صفحات -
تاریخ انتشار 2011