Spin-orbit effects on the (119)Sn magnetic-shielding tensor in solids: a ZORA/DFT investigation.

نویسندگان

  • Fahri Alkan
  • Sean T Holmes
  • Robbie J Iuliucci
  • Karl T Mueller
  • Cecil Dybowski
چکیده

Periodic-boundary and cluster calculations of the magnetic-shielding tensors of (119)Sn sites in various co-ordination and stereochemical environments are reported. The results indicate a significant difference between the predicted NMR chemical shifts for tin(ii) sites that exhibit stereochemically-active lone pairs and tin(iv) sites that do not have stereochemically-active lone pairs. The predicted magnetic shieldings determined either with the cluster model treated with the ZORA/Scalar Hamiltonian or with the GIPAW formalism are dependent on the oxidation state and the co-ordination geometry of the tin atom. The inclusion of relativistic effects at the spin-orbit level removes systematic differences in computed magnetic-shielding parameters between tin sites of differing stereochemistries, and brings computed NMR shielding parameters into significant agreement with experimentally-determined chemical-shift principal values. Slight improvement in agreement with experiment is noted in calculations using hybrid exchange-correlation functionals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical-shift tensors of heavy nuclei in network solids: a DFT/ZORA investigation of (207)Pb chemical-shift tensors using the bond-valence method.

Cluster models are used in calculation of (207)Pb NMR magnetic-shielding parameters of α-PbO, β-PbO, Pb3O4, Pb2SnO4, PbF2, PbCl2, PbBr2, PbClOH, PbBrOH, PbIOH, PbSiO3, and Pb3(PO4)2. We examine the effects of cluster size, method of termination of the cluster, charge on the cluster, introduction of exact exchange, and relativistic effects on calculation of magnetic-shielding tensors with densit...

متن کامل

Assessment of theoretical prediction of the NMR shielding tensor of 195PtClxBr(6-x)(2-) complexes by DFT calculations: experimental and computational results.

In the present work, the ZORA spin-orbit Hamiltonian, in conjunction with the gauge including orbital (GIAO) method based on DFT theory has been used to calculate 195Pt chemical shift of 195PtClxBr(6-x)(2-) complexes. Excellent agreement with experiments has been obtained for calculations bearing on optimized geometries and all electrons triple zeta + polarization (TZP) STO basis sets: the rela...

متن کامل

Spin-orbit-induced longitudinal spin-polarized currents in nonmagnetic solids

For certain nonmagnetic solids with low symmetry the occurrence of spin-polarized longitudinal currents is predicted. These arise due to an interplay of spin-orbit interaction and the particular crystal symmetry. This result is derived using a group-theoretical scheme that allows investigating the symmetry properties of any linear response tensor relevant to the field of spintronics. For the sp...

متن کامل

Computational Investigation on Naphthoquinone Derivatives :Nuclear Magnetic Resonance (NMR) and Quantum mechanic

Naphthoquinones are natural aromatic compounds that can be discovered in various plant families. In recent times a diversity of biological activities of these compounds has been reported. In most cases, these pharmacological activities are related to redox and acid-base properties, which can be modulated synthetically by modifying the substituents attached to the 1, 4- naphthoquinone ring, in o...

متن کامل

DFT Study of NMR Shielding Tensors and Thermodynamic Properties on Pyrene and its Derivatives

Emissions from fossil fuel combustion pose a serious threat to public health and =pose the need for animproved monitoring of polycyclic aromatic hydrocarbons (PARS), a major class of persistent organicpollutants. For this purpose the present study reports an investigation of the electronic structure of Pyrene byuse of different chemical models We also made a comparison between different chemica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 28  شماره 

صفحات  -

تاریخ انتشار 2016