Proliferative and transcriptional identity of distinct classes of neural precursors in the mammalian olfactory epithelium.

نویسندگان

  • Eric S Tucker
  • Maria K Lehtinen
  • Tom Maynard
  • Mariela Zirlinger
  • Catherine Dulac
  • Nancy Rawson
  • Larysa Pevny
  • Anthony-Samuel Lamantia
چکیده

Neural precursors in the developing olfactory epithelium (OE) give rise to three major neuronal classes - olfactory receptor (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons. Nevertheless, the molecular and proliferative identities of these precursors are largely unknown. We characterized two precursor classes in the olfactory epithelium (OE) shortly after it becomes a distinct tissue at midgestation in the mouse: slowly dividing self-renewing precursors that express Meis1/2 at high levels, and rapidly dividing neurogenic precursors that express high levels of Sox2 and Ascl1. Precursors expressing high levels of Meis genes primarily reside in the lateral OE, whereas precursors expressing high levels of Sox2 and Ascl1 primarily reside in the medial OE. Fgf8 maintains these expression signatures and proliferative identities. Using electroporation in the wild-type embryonic OE in vitro as well as Fgf8, Sox2 and Ascl1 mutant mice in vivo, we found that Sox2 dose and Meis1 - independent of Pbx co-factors - regulate Ascl1 expression and the transition from lateral to medial precursor state. Thus, we have identified proliferative characteristics and a dose-dependent transcriptional network that define distinct OE precursors: medial precursors that are most probably transit amplifying neurogenic progenitors for ORNs, VRNs and GnRH neurons, and lateral precursors that include multi-potent self-renewing OE neural stem cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunohistological and electrophysiological characterization of Globose basal stem cells

Objective(s): In the past few decades, variety of foetal, embryonic and adult stem and progenitor cells have been tried with conflicting outcome for cell therapy of central nervous system injury and diseases. Cellular characteristics and functional plasticity of Globose basal stem cells (GBCs) residing in the olfactory epithelium of rat olfactory mucosa have not been studied in the past by the ...

متن کامل

Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system.

Neurogenesis requires factors that regulate the decision of dividing progenitors to leave the cell cycle and activate the neuronal differentiation program. It is shown here that the murine runt-related gene Runx1 is expressed in proliferating cells on the basal side of the olfactory epithelium. These include both Mash1+ olfactory receptor neuron (ORN) progenitors and NeuroD+ ORN precursors. Dis...

متن کامل

Histochemical study of the olfactory rosette of Cyprinus carpio (Linnaeus, 1758)

  The distribution and localization of acid and neutral mucins in various cells lining the olfactory epithelium of Cyprinus carpio have been studied histochemically by employing the PAS-AB technique. Variations in the localization of protein in different cells lining the olfactory epithelium have been correlated with the functional significance of the region concerned. Intense localization of t...

متن کامل

Histochemical study of the olfactory rosette of Cyprinus carpio (Linnaeus, 1758)

  The distribution and localization of acid and neutral mucins in various cells lining the olfactory epithelium of Cyprinus carpio have been studied histochemically by employing the PAS-AB technique. Variations in the localization of protein in different cells lining the olfactory epithelium have been correlated with the functional significance of the region concerned. Intense localization of t...

متن کامل

Single-cell transcriptional profiles and spatial patterning of the mammalian olfactory epithelium.

In order to gain insights into the regulatory control of neuronal diversity in the mammalian olfactory system, we have identified the transcriptional profile of individual olfactory neurons. A single cell microarray strategy was performed to search for candidate genes involved in the molecular specification of dorso-ventral zones of olfactory receptor (OR) expression. Several transcripts were i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 15  شماره 

صفحات  -

تاریخ انتشار 2010