Mouse GPR40 heterologously expressed in Xenopus oocytes is activated by short-, medium-, and long-chain fatty acids.

نویسندگان

  • Gavin Stewart
  • Tohru Hira
  • Andrew Higgins
  • Craig P Smith
  • John T McLaughlin
چکیده

Several orphan G protein-coupled receptors, including GPR40, have recently been shown to be responsive to fatty acids. Although previous reports have suggested GPR40 detects medium- and long-chain fatty acids, it has been reported to be unresponsive to short chain fatty acids. In this study, we have heterologously expressed mouse GPR40 in Xenopus laevis oocytes and measured fatty acid-induced increases in intracellular Ca(2+), via two electrode voltage clamp recordings of the endogenous Ca(2+)-activated chloride conductance. Exposure to 500 muM linoleic acid (C18:2), a long-chain fatty acid, stimulated significant currents in mGPR40-injected oocytes (P < 0.01, ANOVA), but not in water-injected control oocytes (not significant, ANOVA). These currents were confirmed as Ca(2+)-activated chloride conductances because they were biphasic, sensitive to changes in external pH, and inhibited by DIDS. Similar currents were observed with medium-chain fatty acids, such as lauric acid (C12:0) (P < 0.01, ANOVA), and more importantly, with short-chain fatty acids, such as butyric acid (C4:0) (P < 0.01, ANOVA). In contrast, no responses were observed in mGPR40-injected oocytes exposed to either acetic acid (C2:0) or propionic acid (C3:0). Therefore, GPR40 has the capacity to respond to fatty acids with chain lengths of four or greater. This finding has important implications for understanding the structure:function relationship of fatty acid sensors, and potentially for short-chain fatty acid sensing in the gastrointestinal tract.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free fatty acid receptors and drug discovery.

Utilizing the human genome database, the recently developed G-protein-coupled receptor (GPCR) deorphanizing strategy successfully identified multiple receptors of free fatty acids (FFAs) and is proposed to play a critical role in a variety of physiologic homeostasis mechanisms. GPR40 and GPR120 are activated by medium- and long-chain FFAs, whereas GPR41 and GPR43 are activated by short-chain FF...

متن کامل

Taste preference for fatty acids is mediated by GPR40 and GPR120.

The oral perception of fat has traditionally been considered to rely mainly on texture and olfaction, but recent findings suggest that taste may also play a role in the detection of long chain fatty acids. The two G-protein coupled receptors GPR40 (Ffar1) and GPR120 are activated by medium and long chain fatty acids. Here we show that GPR120 and GPR40 are expressed in the taste buds, mainly in ...

متن کامل

Regulation of the GPR40 locus: towards a molecular understanding.

GPR40 {FFAR1 [non-esterified ('free') fatty acid receptor 1]} is a G-protein-coupled receptor expressed preferentially in pancreatic beta-cells. GPR40 functions as a receptor for medium and long-chain fatty acids, and has been implicated in mediating both physiological and pathological effects of fatty acids on beta-cells. The GPR40 gene is encoded at an interesting chromosomal locus that conta...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl&minus;) channel is an essential component of epithelial Cl&minus; transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

Flow cytometry-based binding assay for GPR40 (FFAR1; free fatty acid receptor 1).

GPR40 is a G protein-coupled receptor (GPCR) whose endogenous ligands have recently been identified as medium- and long-chain free fatty acids (FFAs), and it is thought to play an important role in insulin release. Despite recent research efforts, much still remains unclear in our understanding of its pharmacology, mainly because the receptor-ligand interaction has not been analyzed directly. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 290 3  شماره 

صفحات  -

تاریخ انتشار 2006