Formal orthogonal polynomials and rational approximation for arbitrary bilinear forms

نویسندگان

  • Adhemar Bultheel
  • Marc Van Barel
چکیده

Classically, formal orthogonal polynomials are studied with respect to a linear functional, which gives rise to a moment matrix with a Hankel structure. Moreover, in most situations, the moment matrix is supposed to be strongly regular. This implies a number of algebraic properties which are well known, like for example the existence of a three-term recurrence relation (characterised by a tridiagonal Jacobi matrix), Padé approximation properties etc. In this note we shall investigate how these formal algebraic properties generalize for moment matrices with no special structure. Subsequently, we shall look especially at the case of a moment matrix with an indefinite Hankel structure and with a nonsymmetric indefinite Toeplitz structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

Differential equations for discrete Laguerre-Sobolev orthogonal polynomials

The aim of this paper is to study differential properties of orthogonal polynomials with respect to a discrete Laguerre–Sobolev bilinear form with mass point at zero. In particular we construct the orthogonal polynomials using certain Casorati determinants. Using this construction, we prove that they are eigenfunctions of a differential operator (which will be explicitly constructed). Moreover,...

متن کامل

Formal orthogonal polynomials for an arbitrary moment matrix and Lanczos type methods∗

We give a framework for formal orthogonal polynomials with respect to an arbitrary moment matrix. When the moment matrix is Hankel, this simplifies to the classical framework. The relation with Padé approximation and with Krylov subspace methods is given. 1 Formal block orthogonal polynomials We consider a linear functional defined on the space of polynomials in two variables, defined by the mo...

متن کامل

The Graduate Student Section

Multiple orthogonal polynomials are polynomials of one variable that satisfy orthogonality conditions with respect to several measures. They are a very useful extension of orthogonal polynomials and recently received renewed interest because tools have become available to investigate their asymptotic behavior. They appear in rational approximation, number theory, random matrices, integrable sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007