A Survey: Linear and Nonlinear PCA Based Face Recognition Techniques
نویسندگان
چکیده
Face recognition is considered to be one of the most reliable biometric, when security issues are taken into concern. For this, feature extraction becomes a critical problem. Different methods are used for extraction of facial feature which are broadly classified into linear and nonlinear subspaces. Among the linear methods are Linear Discriminant Analysis (LDA), Bayesian Methods (MAP and ML), Discriminative Common Vectors (DCV), Independent Component Analysis (ICA), Tensor faces Multi-Linear Singular Value Decomposition (SVD), Two Dimensional PCA (2DPCA), Two Dimensional LDA (2D-LDA) etc., but Principal Component Analysis (PCA) is considered to be one the classic method in this field. Based on this a brief comparison of PCA family is drawn, of which PCA, Kernel PCA (KPCA), 2DPCA and Two Dimensional Kernel (2DKPCA) are of major concern. Based on literature review recognition performance of PCA family is analyzed using the databases named YALE, YALE-B, ORL and CMU. Concluding remarks about testing criteria set by different authors as listed in literature reveals that K series of PCA produced better results as compared to simple PCA and 2DPCA on the aforementioned datasets.
منابع مشابه
تشخیص چهره با استفاده از PCA و فیلتر گابور
Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...
متن کاملCombination of Nonlinear Dimensionality Reduction Techniques for Face Recognition System
A Face Recognition System is used to automatically identify or verify a person from digital image. Since capturing of face image is not very difficult process and does not require too much cooperation of the subject, it keeps the interest of researchers alive. In this paper, combination of linear and combination of nonlinear dimensionality reduction techniques are implemented separately for fac...
متن کاملA kernel machine based approach for multi-view face recognition
Techniques that can introduce low-dimensional feature representation with enhanced discriminatory power is of paramount importance in face recognition applications. It is well known that the distribution of face images, under a perceivable variation in viewpoint, illumination or facial expression, is highly nonlinear and complex. It is therefore, not surprising that linear techniques, such as t...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملA Review on Non Linear Dimensionality Reduction Techniques for Face Recognition
Principal component Analysis (PCA) has gained much attention among researchers to address the pboblem of high dimensional data sets.during last decade a non-linear variantof PCA has been used to reduce the dimensions on a non linear hyperplane.This paper reviews the various Non linear techniques ,applied on real and artificial data .It is observed that Non-Linear PCA outperform in the counterpa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 10 شماره
صفحات -
تاریخ انتشار 2013