Fluid electrodes for submersible robotics based on dielectric elastomer actuators

نویسندگان

  • Caleb Christianson
  • Nathaniel Goldberg
  • Shengqiang Cai
  • Michael T. Tolley
چکیده

Recently, dielectric elastomer actuators (DEAs) have gathered interest for soft robotics due to their low cost, light weight, large strain, low power consumption, and high energy density. However, developing reliable, compliant electrodes for DEAs remains an ongoing challenge due to issues with fabrication, uniformity of the conductive layer, and mechanical stiffening of the actuators caused by conductive materials with large Young’s moduli. In this work, we present a method for preparing, patterning, and utilizing conductive fluid electrodes. Further, when we submerse the DEAs in a bath containing a conductive fluid connected to ground, the bath serves as a second electrode, obviating the need for depositing a conductive layer to serve as either of the electrodes required of most DEAs. When we apply a positive electrical potential to the conductive fluid in the actuator with respect to ground, the electric field across the dielectric membrane causes charge carriers in the solution to apply an electrostatic force on the membrane, which compresses the membrane and causes the actuator to deform. We have used this process to develop a tethered submersible robot that can swim in a tank of saltwater at a maximum measured speed of 9.2 mm/s. Since saltwater serves as the electrode, we overcome buoyancy issues that may be a challenge for pneumatically actuated soft robots and traditional, rigid robotics. This research opens the door to low-power underwater robots for search and rescue and environmental monitoring applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors.

A key element in stretchable actuators, sensors, and systems based on elastomer materials are compliant electrodes. While there exist many methodologies for fabricating electrodes on dielectric elastomers, very few succeed in achieving high-resolution patterning over large areas. We present a novel approach for the production of mechanically robust, high-resolution compliant electrodes for stre...

متن کامل

Dielectric Elastomer Based "Grippers" for Soft Robotics.

The use of few stiff fibers to control the deformation of dielectric elastomer actuators, in particular to break the symmetry of equi-biaxial lateral strain in the absence of prestretch, is demonstrated. Actuators with patterned fibers are shown to evolve into unique shapes upon electrical actuation, enabling novel designs of gripping actuators for soft robotics.

متن کامل

Multilayer Dielectric Elastomer Actuators with Ion Implanted Electrodes

We present the design, fabrication process and characterization of multilayer miniaturized polydimethylsiloxane (PDMS)-based dielectric elastomer diaphragm actuators. The conductive stretchable electrodes are obtained by lowenergy metal ion implantation. To increase force, decrease the required voltage, and avoid dielectric breakdown, we present here a technique to fabricate multilayer devices ...

متن کامل

Small, fast, and tough: Shrinking down integrated elastomer transducers

We review recent progress in miniaturized dielectric elastomer actuators, sensors and energy harvesters. We focus primarily on configurations where the large strain, high compliance, stretchability and high level of integration o↵ered by dielectric elastomer transducers provide significant advantages over other mm or µm-scale transduction technologies. We first present the most active applicati...

متن کامل

Fabrication Process of Silicone-based Dielectric Elastomer Actuators

This contribution demonstrates the fabrication process of dielectric elastomer transducers (DETs). DETs are stretchable capacitors consisting of an elastomeric dielectric membrane sandwiched between two compliant electrodes. The large actuation strains of these transducers when used as actuators (over 300% area strain) and their soft and compliant nature has been exploited for a wide range of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017