Formation of brine channels in sea ice.
نویسندگان
چکیده
Liquid salty micro-channels (brine) between growing ice platelets in sea ice are an important habitat for CO2-binding microalgaea with great impact on polar ecosystems. The structure formation of ice platelets is microscopically described and a phase field model is developed. The pattern formation during solidification of the two-dimensional interstitial liquid is considered by two coupled order parameters, the tetrahedricity as structure of ice and the salinity. The coupling and time evolution of these order parameters are described by a consistent set of three model parameters. They determine the velocity of the freezing process and the structure formation, the phase diagram, the super-cooling and super-heating region, and the specific heat. The model is used to calculate the short-time frozen micro-structures. The obtained morphological structure is compared with the vertical brine pore space obtained from X-ray computed tomography.
منابع مشابه
Modeling the morphogenesis of brine channels in sea ice.
Brine channels are formed in sea ice under certain constraints and represent a habitat of different microorganisms. The complex system depends on a number of various quantities as salinity, density, pH value, or temperature. Each quantity governs the process of brine channel formation. There exists a strong link between bulk salinity and the presence of brine drainage channels in growing ice wi...
متن کاملLiving at extremes
The Biochemist — February 2005. © 2005 Biochemical Society 12 of metres thick. The majority of the ice in the Southern Ocean lasts only less than 1 year, and the average Antarctic sea ice thickness is 1 m. In contrast, in the Arctic Ocean sea ice can last several years and the average thickness is generally 2 m. When ice forms from freshwater, the result is a hard brittle solid with the primary...
متن کاملBrine fluxes from growing sea ice
[1] It is well known that brine drainage from growing sea ice has a controlling influence on its mechanical, electromagnetic, biological and transport properties, and hence upon the buoyancy forcing and ecology in the polar oceans. When the ice has exceeded a critical thickness the drainage process is dominated by brine channels: liquid conduits extending through the ice. We describe a theoreti...
متن کاملImplications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice
Dynamic temporal and spatial changes of physical, chemical and spatial properties of sea ice pose many challenges to the sympagic community which inhabit a network of brine channels in its interior. Experiments were conducted to reveal the influence of the internal surface area and the structure of the network on species composition and distribution within sea ice. The surface of the brine chan...
متن کاملThe Response of Antarctic Sea Ice Algae to Changes in pH and CO2
Ocean acidification substantially alters ocean carbon chemistry and hence pH but the effects on sea ice formation and the CO2 concentration in the enclosed brine channels are unknown. Microbial communities inhabiting sea ice ecosystems currently contribute 10-50% of the annual primary production of polar seas, supporting overwintering zooplankton species, especially Antarctic krill, and seeding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2017