Detection of Curvilinear Structures by Tensor Voting Applied to Fiber Characterization

نویسندگان

  • Nataliya Strokina
  • Tatiana Kurakina
  • Tuomas Eerola
  • Lasse Lensu
  • Heikki Kälviäinen
چکیده

The paper presents a framework for the detection of curvilinear objects in images. Such objects are challenging to be described by a geometrical model, and although they appear in a number of applications, the problem of detecting curvilinear objects has drawn limited attention. The proposed approach starts with an edge detection algorithm after which the task of object detection becomes a problem of edge linking. A state-of-the-art local linking approach called tensor voting is used to estimate the edge point saliency describing the likelihood of a point belonging to a curve, and to extract the end points and junction points of these curves. After the tensor voting, the curves are grown from high-saliency seed points utilizing a linking method proposed in this paper. In the experimental part of the work, the method was systematically tested on pulp suspension images to characterize fibers based on their length and curl index. The fiber length was estimated with the accuracy of 71.5% and the fiber curvature with the accuracy of 70.7%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and detection of 3-D curvilinear structures

In this paper we present a new method for estimating confidence and curvature of 3-D curvilinear structures. The gradient structure tensor (GST) models shift-invariance. The eigenstructure of the tensor allows estimation of local dimensionality, orientation, and the corresponding confidence value. Local rotational invariance, which occurs often in images, causes a lower confidence estimate. Thi...

متن کامل

Confidence and Curvature Estimation of Curvilinear Structures in 3-D

In this paper we present a new method for estimating confidence and curvature of 3-D curvilinear structures. The gradient structure tensor (GST) models shift-invariance. The eigenstructure of the tensor allows estimation of local dimensionality, orientation, and the corresponding confidence value. Local rotational invariance, which occurs often in images, causes a lower confidence estimate. Thi...

متن کامل

Free vibration analysis of variable stiffness composite laminated thin skew plates using IGA

A NURBS-based isogeometric finite element formulation is developed and adopted to the free vibration analysis of finite square and skew laminated plates. Variable stiffness plies are assumed due to implementation of curvilinear fiberreinforcements. It is assumed due to employment of tow placement technology, in each ply of variable stiffness composite laminated plate the fiber reinforceme...

متن کامل

Investigations of Tensor Voting Modeling

Tensor voting (TV) is a method for inferring geometric structures from sparse, irregular and possibly noisy input. It was initially proposed by Guy and Medioni [Guy96] and has been applied to several computer vision applications. TV generates a dense output field in a domain by dispersing information associated with sparse input tokens. In 3-D this implies that a surface can be generated from a...

متن کامل

Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images

The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013