Localization theorems for eigenvalues of quaternionic matrices
نویسندگان
چکیده
Ostrowski type and Brauer type theorems are derived for the left eigenvalues of quaternionic matrix. We see that the above theorems for the left eigenvalues are also true for the case of right eigenvalues, when the diagonals of quaternionic matrix are real. Some distribution theorems are given in terms of ovals of Cassini that are sharper than the Ostrowski type theorems, respectively, for the left and right eigenvalues of quaternionic matrix. In addition, generalizations of the Gerschgorin type theorems are discussed for both the left and right eigenvalues of quaternionic matrix, and finally, we see that our framework is so developed that generalizes the existing results in the literatures.
منابع مشابه
Location for the Left Eigenvalues of Quaternionic Matrix
The purpose of this paper is to locate and estimate the left eigenvalues of quaternionic matrices. We present some distribution theorems for the left eigenvalues of square quaternionic matrices based on the generalized Gerschgorin theorem and generalized Brauer theorem.
متن کاملRandom right eigenvalues of Gaussian quaternionic matrices
We consider a random matrix whose entries are independent Gaussian variables taking values in the field of quaternions with variance 1/n. Using logarithmic potential theory, we prove the almost sure convergence, as the dimension n goes to infinity, of the empirical distribution of the right eigenvalues towards some measure supported on the unit ball of the quaternions field. Some comments on mo...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملQuaternionic Matrices: Inversion and Determinant ∗
We discuss the Schur complement formula for quaternionic matrices, M , and give an efficient method to calculate the matrix inverse. We also introduce the functional D[M ] which extends to quaternionic matrices the non-negative number |det[M ]|. 1. Introduction. Much of the spectral theory of complex matrices does not extend to quaternion matrices without further modifications [1, 2, 3]. In par...
متن کاملQuaternionic linear algebra and plurisubharmonic functions of quaternionic variables
Quaternionic linear algebra and plurisubharmonic functions of quaternionic variables. Abstract We remind known and establish new properties of the Dieudonné and Moore determinants of quaternionic matrices. Using these linear algebraic results we develop a basic theory of plurisubharmonic functions of quaternionic variables. The main point of this paper is that in quaternionic algebra and analys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1502.08014 شماره
صفحات -
تاریخ انتشار 2015