Spatiotemporal Interpolation Methods for Air Pollution Exposure

نویسندگان

  • Lixin Li
  • Xingyou Zhang
  • James B. Holt
  • Jie Tian
  • Reinhard Piltner
چکیده

This paper investigates spatiotemporal interpolation methods for the application of air pollution assessment. The air pollutant of interest in this paper is fine particulate matter PM2.5. The choice of the time scale is investigated when applying the shape function-based method. It is found that the measurement scale of the time dimension has an impact on the interpolation results. Based upon the comparison between the accuracies of interpolation results, the most effective time scale out of four experimental ones was selected for performing the PM2.5 interpolation. The paper also evaluates the population exposure to the ambient air pollution of PM2.5 at the county-level in the contiguous U.S. in 2009. The interpolated county-level PM2.5 has been linked to 2009 population data and the population with a risky PM2.5 exposure has been estimated. The risky PM2.5 exposure means the PM2.5 concentration exceeding the National Ambient Air Quality Standards. The geographic distribution of the counties with a risky PM2.5 exposure is visualized. This work is essential to understanding the associations between ambient air pollution exposure and population health outcomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Population Exposure to Fine Particulate Matter in the Conterminous U.S. using Shape Function-based Spatiotemporal Interpolation Method: A County Level Analysis.

This paper investigates spatiotemporal interpolation methods for the application of air pollution assessment. The air pollutant of interest in this paper is fine particulate matter PM2.5. The choice of the time scale is investigated when applying the shape function-based method. It is found that the measurement scale of the time dimension has an impact on the quality of interpolation results. B...

متن کامل

Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure to Fine Particulate Matter in the Contiguous U.S. and a Real-Time Web Application

Appropriate spatiotemporal interpolation is critical to the assessment of relationships between environmental exposures and health outcomes. A powerful assessment of human exposure to environmental agents would incorporate spatial and temporal dimensions simultaneously. This paper compares shape function (SF)-based and inverse distance weighting (IDW)-based spatiotemporal interpolation methods ...

متن کامل

Time-space Kriging to address the spatiotemporal misalignment in the large datasets.

This paper presents a Bayesian hierarchical spatiotemporal method of interpolation, termed as Markov Cube Kriging (MCK). The classical Kriging methods become computationally prohibitive, especially for large datasets due to the O(n3) matrix decomposition. MCK offers novel and computationally efficient solutions to address spatiotemporal misalignment, mismatch in the spatiotemporal scales and mi...

متن کامل

Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study

BACKGROUND Few epidemiological studies of air pollution have used residential histories to develop long-term retrospective exposure estimates for multiple ambient air pollutants and vehicle and industrial emissions. We present such an exposure assessment for a Canadian population-based lung cancer case-control study of 8353 individuals using self-reported residential histories from 1975 to 1994...

متن کامل

Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree

Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011