Response of human REV1 to different DNA damage: preferential dCMP insertion opposite the lesion.

نویسندگان

  • Yanbin Zhang
  • Xiaohua Wu
  • Olga Rechkoblit
  • Nicholas E Geacintov
  • John-Stephen Taylor
  • Zhigang Wang
چکیده

REV1 functions in the DNA polymerase zeta mutagenesis pathway. To help understand the role of REV1 in lesion bypass, we have examined activities of purified human REV1 opposite various template bases and several different DNA lesions. Lacking a 3'-->5' proofreading exonuclease activity, purified human REV1 exhibited a DNA polymerase activity on a repeating template G sequence, but catalyzed nucleotide insertion with 6-fold lower efficiency opposite a template A and 19-27-fold lower efficiency opposite a template T or C. Furthermore, dCMP insertion was greatly preferred regardless of the specific template base. Human REV1 inserted a dCMP efficiently opposite a template 8-oxoguanine, (+)-trans-anti-benzo[a]pyrene-N2-dG, (-)-trans-anti-benzo[a]pyrene-N2-dG and 1,N6-ethenoadenine adducts, very inefficiently opposite an acetylaminofluorene-adducted guanine, but was unresponsive to a template TT dimer or TT (6-4) photoproduct. Surprisingly, the REV1 specificity of nucleotide insertion was very similar in response to different DNA lesions with greatly preferred C insertion and least frequent A insertion. By combining the dCMP insertion activity of human REV1 with the extension synthesis activity of human polymerase kappa, bypass of the trans-anti-benzo[a]pyrene-N2-dG adducts and the 1,N6-ethenoadenine lesion was achieved by the two-polymerase two-step mechanism. These results suggest that human REV1 is a specialized DNA polymerase that may contribute to dCMP insertion opposite many types of DNA damage during lesion bypass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The catalytic function of the Rev1 dCMP transferase is required in a lesion-specific manner for translesion synthesis and base damage-induced mutagenesis

The Rev1-Polzeta pathway is believed to be the major mechanism of translesion DNA synthesis and base damage-induced mutagenesis in eukaryotes. While it is widely believed that Rev1 plays a non-catalytic function in translesion synthesis, the role of its dCMP transferase activity remains uncertain. To determine the relevance of its catalytic function in translesion synthesis, we separated the Re...

متن کامل

Translesion synthesis of acetylaminofluorene-dG adducts by DNA polymerase zeta is stimulated by yeast Rev1 protein.

Translesion synthesis is an important mechanism in response to unrepaired DNA lesions during replication. The DNA polymerase zeta (Polzeta) mutagenesis pathway is a major error-prone translesion synthesis mechanism requiring Polzeta and Rev1. In addition to its dCMP transferase, a non-catalytic function of Rev1 is suspected in cellular response to certain types of DNA lesions. However, it is no...

متن کامل

The human REV1 gene codes for a DNA template-dependent dCMP transferase.

DNA is frequently damaged by various physical and chemical agents. DNA damage can lead to mutations during replication. In the yeast Saccharomyces cerevisiae, the damage-induced mutagenesis pathway requires the Rev1 protein. We have isolated a human cDNA homologous to the yeast REV1 gene. The human REV1 cDNA consists of 4255 bp and codes for a protein of 1251 amino acid residues with a calculat...

متن کامل

ATR Homolog Mec1 Controls Association of DNA Polymerase ζ-Rev1 Complex with Regions near a Double-Strand Break

DNA polymerase zeta (Polzeta) and Rev1 contribute to the bypassing of DNA lesions, termed translesion DNA synthesis (TLS). Polzeta consists of two subunits, one encoded by REV3 (the catalytic subunit) and the other encoded by REV7. Rev1 acts as a deoxycytidyl transferase, inserting dCMP opposite lesions. Polzeta and Rev1 have been shown to operate in the same TLS pathway in the budding yeast Sa...

متن کامل

Human Rev1 polymerase disrupts G-quadruplex DNA

The Y-family DNA polymerase Rev1 is required for successful replication of G-quadruplex DNA (G4 DNA) in higher eukaryotes. Here we show that human Rev1 (hRev1) disrupts G4 DNA structures and prevents refolding in vitro. Nucleotidyl transfer by hRev1 is not necessary for mechanical unfolding to occur. hRev1 binds G4 DNA substrates with Kd,DNA values that are 4-15-fold lower than those of non-G4 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 30 7  شماره 

صفحات  -

تاریخ انتشار 2002