Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics
نویسندگان
چکیده
UNLABELLED We provide evidence to show that the standard reactant concentrations used in tissue engineering to cross-link collagen-based scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against degradation in an aqueous environment. We demonstrate this with a detailed and systematic study by comparing scaffolds made from (a) collagen from two different suppliers, (b) gelatin (a partially denatured collagen) and (c) 50% collagen-50% gelatin mixtures. The materials were processed, using lyophilisation, to produce homogeneous, highly porous scaffolds with isotropic architectures and pore diameters ranging from 130 to 260 μm. Scaffolds were cross-linked using a carbodiimide treatment, to establish the effect of the variations in crosslinking conditions (down to very low concentrations) on the morphology, swelling, degradation and mechanical properties of the scaffolds. Carbodiimide concentration of 11.5mg/ml was defined as the standard (100%) and was progressively diluted down to 0.1%. It was found that 10-fold reduction in the carbodiimide content led to the significant increase (almost 4-fold) in the amount of free amine groups (primarily on collagen lysine residues) without compromising mechanics and stability in water of all resultant scaffolds. The importance of this finding is that, by reducing cross-linking, the corresponding cell-reactive carboxylate anions (collagen glutamate or aspartate residues) that are essential for integrin-mediated binding remain intact. Indeed, a 10-fold reduction in carbodiimide crosslinking resulted in near native-like cell attachment to collagen scaffolds. We have demonstrated that controlling the degree of cross-linking, and hence retaining native scaffold chemistry, offers a major step forward in the biological performance of collagen- and gelatin-based tissue engineering scaffolds. STATEMENT OF SIGNIFICANCE This work developed collagen and gelatine-based scaffolds with structural, material and biological properties suitable for use in myocardial tissue regeneration. The novelty and significance of this research consist in elucidating the effect of the composition, origin of collagen and crosslinking concentration on the scaffold physical and cell-binding characteristics. We demonstrate that the standard carbodiimide concentrations used to crosslink collagenous scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against dissolution. The importance of this finding is that, by reducing crosslinking, the corresponding cell-reactive carboxylate anions (essential for integrin-mediated binding) remain intact and the native scaffold chemistry is retained. This offers a major step forward in the biological performance of tissue engineered scaffolds.
منابع مشابه
Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability.
The low stiffness of reconstituted collagen hydrogels has limited their use as scaffolds for engineering implantable tissues. Although chemical crosslinking has been used to stiffen collagen and protect it against enzymatic degradation in vivo, it remains unclear how crosslinking alters the vascularization of collagen hydrogels. In this study, we examine how the crosslinking agents genipin and ...
متن کاملOptimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds
Short wavelength (λ = 254 nm) UV irradiation was evaluated over a range of intensities (0.06 to 0.96 J/cm(2)) as a means of cross-linking collagen- and gelatin-based scaffolds, to tailor their material characteristics whilst retaining biological functionality. Zero-link carbodiimide treatments are commonly applied to collagen-based materials, forming cross-links from carboxylate anions (for exa...
متن کاملCompositional and in Vitro Evaluation of Nonwoven Type I Collagen/Poly-dl-lactic Acid Scaffolds for Bone Regeneration
Poly-dl-lactic acid (PDLLA) was blended with type I collagen to attempt to overcome the instantaneous gelation of electrospun collagen scaffolds in biological environments. Scaffolds based on blends of type I collagen and PDLLA were investigated for material stability in cell culture conditions (37 °C; 5% CO2) in which post-electrospinning glutaraldehyde crosslinking was also applied. The resul...
متن کاملExperimental and Modeling Study of Collagen Scaffolds with the Effects of Crosslinking and Fiber Alignment
Collagen type I scaffolds are commonly used due to its abundance, biocompatibility, and ubiquity. Most applications require the scaffolds to operate under mechanical stresses. Therefore understanding and being able to control the structural-functional integrity of collagen scaffolds becomes crucial. Using a combined experimental and modeling approach, we studied the structure and function of Ty...
متن کاملInvestigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering.
Collagen-based scaffolds can be used to mimic the extracellular matrix (ECM) of soft tissues and provide support during tissue regeneration. To better match the native ECM composition and mechanical properties as well as tailor the degradation resistance and available cell binding motifs, other proteins or different collagen types may be added. The present study has explored the use of componen...
متن کامل