Discriminative histograms of local dominant orientation (D-HLDO) for biometric image feature extraction

نویسندگان

  • Jianjun Qian
  • Jian Yang
  • Guangwei Gao
چکیده

This paper presents a simple and robust method, namely discriminative histograms of local dominant orientation (D-HLDO), for biometric image feature extraction. In D-HLDO, the local dominant orientation map and the corresponding relative energy map are obtained by applying the singular value decomposition (SVD) to the collected gradient vectors over a local patch. The dominant orientation map and the relative energy map are then used to construct the concatenated histogram features. Local mean based nearest neighbor discriminant analysis (LM-NNDA) is finally employed to reduce the redundancy information and get the low-dimensional and discriminative features. The proposed method is applied to face, finger-knuckle-print and Palm biometrics and is examined using the AR, CMU PIE and FRGCv2.0 face image databases, the PolyU Palmprint database, and the PolyU Finger-Knuckle-Print database. Experimental results demonstrate the effectiveness of the proposed D-HLDO method. & 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image authentication using LBP-based perceptual image hashing

Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...

متن کامل

Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram

Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a  database. In medical applications, CBIR is a tool used by physicians to compare the previous and current  medical images associated with patients pathological conditions. As the volume of pictorial information  stored in medical image databases is in progress, efficient image indexing and retri...

متن کامل

Biometrics Recognition based on Image Local Features Ordinal Encoding

In the present informational era, with the continue extension of embedded computing systems, the demand of faster and robust image descriptors is an important issue. However, image representation and recognition is an open problem. The aim of the paper is to embrace ordinal measurements for image analysis and to apply the concept for a real problem, such as biometric identification. Biometrics ...

متن کامل

Fingerprint Recognition using Minutiae Extraction

Fingerprints are a great source for identification of individuals. Fingerprint recognition is one of the oldest forms of biometric identification. However recognition of fingerprint is not always easy. The objective of this paper is to provide a way for fingerprint recognition using minutiae extraction. The factors relating to obtaining high performance feature point detection algorithm, such a...

متن کامل

LBP and Color Descriptors for Image Classification

Four novel color Local Binary Pattern (LBP) descriptors are presented in this chapter for scene image and image texture classification with applications to image search and retrieval. Specifically, the first color LBP descriptor, the oRGB-LBP descriptor, is derived by concatenating the LBP features of the component images in an opponent color space — the oRGB color space. The other three color ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2013