Investigation of tDCS volume conduction effects in a highly realistic head model.

نویسندگان

  • S Wagner
  • S M Rampersad
  • Ü Aydin
  • J Vorwerk
  • T F Oostendorp
  • T Neuling
  • C S Herrmann
  • D F Stegeman
  • C H Wolters
چکیده

OBJECTIVE We investigate volume conduction effects in transcranial direct current stimulation (tDCS) and present a guideline for efficient and yet accurate volume conductor modeling in tDCS using our newly-developed finite element (FE) approach. APPROACH We developed a new, accurate and fast isoparametric FE approach for high-resolution geometry-adapted hexahedral meshes and tissue anisotropy. To attain a deeper insight into tDCS, we performed computer simulations, starting with a homogenized three-compartment head model and extending this step by step to a six-compartment anisotropic model. MAIN RESULTS We are able to demonstrate important tDCS effects. First, we find channeling effects of the skin, the skull spongiosa and the cerebrospinal fluid compartments. Second, current vectors tend to be oriented towards the closest higher conducting region. Third, anisotropic WM conductivity causes current flow in directions more parallel to the WM fiber tracts. Fourth, the highest cortical current magnitudes are not only found close to the stimulation sites. Fifth, the median brain current density decreases with increasing distance from the electrodes. SIGNIFICANCE Our results allow us to formulate a guideline for volume conductor modeling in tDCS. We recommend to accurately model the major tissues between the stimulating electrodes and the target areas, while for efficient yet accurate modeling, an exact representation of other tissues is less important. Because for the low-frequency regime in electrophysiology the quasi-static approach is justified, our results should also be valid for at least low-frequency (e.g., below 100 Hz) transcranial alternating current stimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume conduction effects in tDCS using a 1mm geometry-adapted hexahedral finite element head model.

Despite of the recent progress, the knowledge about the underlying mechanisms behind tDCS is still limited. In order to gain insight in the sophisticated interplay of stimulation, volume conduction and resulting cortical current density distribution, we follow an effect-by-effect approach. We start our investigations with a homogenized isotropic three compartment (skin, skull, brain) head model...

متن کامل

Investigation of the Effects of Non-Linear and Non-Homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-Infinite Body

In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-correct...

متن کامل

Significance of Heat Conduction Parameter along the Rolling Direction in the Thermal Modeling of the Hot Rolling Process

Obtaining temperature distribution data of slabs under rolling is essential as the mechanical and metallurgical properties of the metal under this process vary with temperature. Using the control volume method, a mathematical model is employed in this study to predict slab temperature in the hot roll process at Mobarakeh Steel Company. The effects of different parameters including the heat resu...

متن کامل

Consideration of Individual Brain Geometry and Anisotropy on the Effect of tDCS

Introduction: The response variability between subjects, which is one of the fundamental challenges facing transcranial direct current stimulation (tDCS), can be investigated by understanding how the current is distributed through the brain. This understanding can be obtained by means of computational methods utilizing finite element (FE) models. Materials and Methods: In this study, the effect...

متن کامل

The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation—A Computational Study

A transcranial channel is an interface between the skull and brain; it consists of a biocompatible and highly conductive material that helps convey the current induced by transcranial direct current stimulation (tDCS) to the target area. However, it has been proposed only conceptually, and there has been no concrete study of its efficacy. In this work, we conducted a computational investigation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neural engineering

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2014