Localized XId3 mRNA activation in Xenopus embryos by cytoplasmic polyadenylation

نویسندگان

  • Anatole B Afouda
  • Sorogini Reynaud-Deonauth
  • Tim Mohun
  • Georges Spohr
چکیده

In Xenopus development, during meiosis and cleavage, the extent of polyadenylation plays a central role in regulating the expression of transcripts and this is mediated by cis regulatory cytoplasmic polyadenylation elements (CPE) in the 3'-UTRs. We have identified a palindromic CPE in the mRNA of Xenopus Id3 which is conserved in the Id genes from other vertebrates. It promotes cytoplasmic polyadenylation and is negatively regulated by sequences further upstream in the 3'-UTR. This palindromic CPE promotes polyadenylation in both the epithelial and sensorial layers of the dorsal ectoderm in early embryos, but association with the upstream negative element blocks this effect in the epithelial layer. The asymmetric polyadenylation may be important for establishing a prepattern of transcriptional regulators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a C-rich element as a novel cytoplasmic polyadenylation element in Xenopus embryos

During Xenopus early development, the length of the poly(A) tail of maternal mRNAs is a key element of translational control. Several sequence elements (cytoplasmic polyadenylation elements) localized in 3' untranslated regions have been shown to be responsible for the cytoplasmic polyadenylation of certain maternal mRNAs. Here, we demonstrate that the mRNA encoding the catalytic subunit of pho...

متن کامل

The 36-kilodalton embryonic-type cytoplasmic polyadenylation element-binding protein in Xenopus laevis is ElrA, a member of the ELAV family of RNA-binding proteins.

The translational activation of several maternal mRNAs in Xenopus laevis is dependent on cytoplasmic poly(A) elongation. Messages harboring the UUUUUAU-type cytoplasmic polyadenylation element (CPE) in their 3' untranslated regions (UTRs) undergo polyadenylation and translation during oocyte maturation. This CPE is bound by the protein CPEB, which is essential for polyadenylation. mRNAs that ha...

متن کامل

Meiotic maturation in Xenopus requires polyadenylation of multiple mRNAs.

Cytoplasmic polyadenylation of specific mRNAs commonly is correlated with their translational activation during development. Here, we focus on links between cytoplasmic polyadenylation, translational activation and the control of meiotic maturation in Xenopus oocytes. We manipulate endogenous c-mos mRNA, which encodes a protein kinase that regulates meiotic maturation. We determined that transl...

متن کامل

Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation.

A strict temporal order of maternal mRNA translation is essential for meiotic cell cycle progression in oocytes of the frog Xenopus laevis. The molecular mechanisms controlling the ordered pattern of mRNA translational activation have not been elucidated. We report a novel role for the neural stem cell regulatory protein, Musashi, in controlling the translational activation of the mRNA encoding...

متن کامل

ElrA binding to the 3′UTR of cyclin E1 mRNA requires polyadenylation elements

The early cell divisions of Xenopus laevis and other metazoan embryos occur in the presence of constitutively high levels of the cell cycle regulator cyclin E1. Upon completion of the 12th cell division, a time at which many maternal proteins are downregulated by deadenylation and destabilization of their encoding mRNAs, maternal cyclin E1 protein is downregulated while its mRNA is polyadenylat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 88  شماره 

صفحات  -

تاریخ انتشار 1999