A Generalization of Moore–penrose Biorthogonal Systems * Masaya Matsuura †

نویسنده

  • MASAYA MATSUURA
چکیده

In this paper, the notion of Moore–Penrose biorthogonal systems is generalized. In [Fiedler, Moore–Penrose biorthogonal systems in Euclidean spaces, Lin. Alg. Appl. 362 (2003), pp. 137–143], transformations of generating systems of Euclidean spaces are examined in connection with the Moore-Penrose inverses of their Gram matrices. In this paper, g-inverses are used instead of the Moore–Penrose inverses and, in particular, the details of transformations derived from reflexive ginverses are studied. Furthermore, the characterization theorem of Moore–Penrose inverses in [Fiedler and Markham, A characterization of the Moore–Penrose inverse, Lin. Alg. Appl. 179 (1993), pp. 129–133] is extended to any reflexive g-inverse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of Moore-Penrose biorthogonal systems

In this paper, the notion of Moore–Penrose biorthogonal systems is generalized. In [Fiedler, Moore–Penrose biorthogonal systems in Euclidean spaces, Lin. Alg. Appl. 362 (2003), pp. 137–143], transformations of generating systems of Euclidean spaces are examined in connection with the Moore-Penrose inverses of their Gram matrices. In this paper, g-inverses are used instead of the Moore–Penrose i...

متن کامل

An Efficient Schulz-type Method to Compute the Moore-Penrose Inverse

A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.

متن کامل

A generalization of the Moore-Penrose inverse related to matrix subspaces of Cn×m

A natural generalization of the classical Moore-Penrose inverse is presented. The so-called S-Moore-Penrose inverse of a m × n complex matrix A, denoted by AS, is defined for any linear subspace S of the matrix vector space Cn×m. The S-Moore-Penrose inverse AS is characterized using either the singular value decomposition or (for the nonsingular square case) the orthogonal complements with resp...

متن کامل

The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules

Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...

متن کامل

Inverse Problems in Neural Field Theory

We study inverse problems in neural field theory, i.e., the construction of synaptic weight kernels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness, and stability of solutions to the inverse problem for the Amari neural field equation as a special case, and prove that these problems are generally ill-posed. In order to construct solutions to the inver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003