Fuzzy Neural Tree for Knowledge Modeling: a Probabilistic Possibilistic Framework

نویسندگان

  • ÖZER CIFTCIOGLU
  • MICHAEL S. BITTERMANN
چکیده

A novel fuzzy-neural tree (FNT) is presented, where each tree node uses a Gaussian as a fuzzy membership or possibility distribution in place of sigmoidal function in conventional neural networks. Although neural networks with Gaussian activation functions as well as different types of cooperative neuro-fuzzy systems have been extensively described in the literature, the FNT presented in this paper implies a novel type of cooperation between fuzzy logic and neural structure. The neurons of the neural tree perform fuzzy logic operations, and in contrast to existing neural systems, the parameters of the operations are established not by training from measured data, but by conditioning the neuron with the consistency condition of possibility theory being entirely independent of data. Therefore the FNT uniquely performs transparent knowledge-driven modeling of systems with arbitrary complexity, which is in contrast to data-driven modeling in the existing neural network and neuro-fuzzy systems cases, as well as the transparent knowledge-driven modeling of systems with restricted complexity in the case of the existing fuzzy logic applications. The novel FNT is described in detail pointing out its various potential utilizations, and exemplifying them by means of three computer experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis.

In risk analysis, the treatment of the epistemic uncertainty associated to the probability of occurrence of an event is fundamental. Traditionally, probabilistic distributions have been used to characterize the epistemic uncertainty due to imprecise knowledge of the parameters in risk models. On the other hand, it has been argued that in certain instances such uncertainty may be best accounted ...

متن کامل

A multi-product vehicle routing scheduling model with time window constraints for cross docking system under uncertainty: A fuzzy possibilistic-stochastic programming

Mathematical modeling of supply chain operations has proven to be one of the most complex tasks in the field of operations management and operations research. Despite the abundance of several modeling proposals in the literature; for vast majority of them, no effective universal application is conceived. This issue renders the proposed mathematical models inapplicable due largely to the fact th...

متن کامل

Prediction Problem’s Solution for the Finite Possibilistic Model of Expert Knowledge Streams

The solution of the prediction problem is presented for the finite possibilistic modelling [3,4,6,7]. A recurrent variant of finite possibilistic models is considered. In this variant, we define the regularization condition for constructing a quasi-optimal estimator of fuzzy transition operator (FTO). We construct the discrete recurrent extremal fuzzy process with possibilistic uncertainty, the...

متن کامل

Probabilistic-Possibilistic Belief Networks

The interpretation of membership functions of fuzzy sets as statistical likelihood functions leads to a probabilistic-possibilistic hierarchical description of uncertain knowledge. The fundamental advantage of the resulting fuzzy probabilities with respect to imprecise probabilities is the ability of using all the information provided by the data. This paper studies the possibility of using fuz...

متن کامل

An Interactive Possibilistic Programming Approach to Designing a 3PL Supply Chain Network Under Uncertainty

The design of closed-loop supply chain networks has attracted increasing attention in recent decades with environmental concerns and commercial factors. Due to the rapid growth of knowledge and technology, the complexity of the supply chain operations is increasing daily and organizations are faced with numerous challenges and risks in their management. Most organizations with limited resources...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014