The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation.
نویسندگان
چکیده
We investigated strategies involved in odour intensity coding by the primary olfactory centre of insects, the antennal lobe (AL), the structural and functional analogue of the olfactory bulb. Using calcium imaging in the honeybee, we simultaneously measured the projection neuron output responses and a compound signal dominated by receptor neuron input in identified olfactory glomeruli to odours spanning seven log units of concentration. A comparison of the two processing levels indicates that the intercellular computation within the AL modulates and contrast-enhances the primary olfactory signals. As a result the AL network optimizes the olfactory code: odour representation is improved at lower concentrations, the relative activity of olfactory glomeruli allows encoding odour quality over up to four log-unit concentrations, and odour-intensity is reliably represented in the overall excitation across AL.
منابع مشابه
Neonicotinoid-induced impairment of odour coding in the honeybee
Exposure to neonicotinoid pesticides is considered one of the possible causes of honeybee (Apis mellifera) population decline. At sublethal doses, these chemicals have been shown to negatively affect a number of behaviours, including performance of olfactory learning and memory, due to their interference with acetylcholine signalling in the mushroom bodies. Here we provide evidence that neonico...
متن کاملData-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation.
Insects have a remarkable ability to identify and track odour sources in multi-odour backgrounds. Recent behavioural experiments show that this ability relies on detecting millisecond stimulus asynchronies between odourants that originate from different sources. Honeybees, Apis mellifera, are able to distinguish mixtures where both odourants arrive at the same time (synchronous mixtures) from t...
متن کاملOlfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learnin...
متن کاملOdour coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera).
The primary olfactory neuropil, the antennal lobe (AL) in insects, is organized in glomeruli. Glomerular activity patterns are believed to represent the across-fibre pattern of the olfactory code. These patterns depend on an organized innervation from the afferent receptor cells, and interconnections of local interneurons. It is unclear how the complex organization of the AL is achieved ontogen...
متن کاملOdour perception in honeybees: coding information in glomerular patterns.
Major advances have been made during the past two years in understanding how honeybees process olfactory input at the level of their first brain structure dealing with odours, the antennal lobe (the insect analogue of the mammalian olfactory bulb). It is now possible to map physiological responses to morphologically identified olfactory glomeruli, allowing for the creation of a functional atlas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 18 8 شماره
صفحات -
تاریخ انتشار 2003