The Normal Graph Conjecture is true for Circulants

نویسندگان

  • ANNEGRET K. WAGLER
  • Annegret K. Wagler
چکیده

Normal graphs are defined in terms of cross-intersecting set families: a graph is normal if it admits a clique cover Q and a stable set cover S s.t. every clique in Q intersects every stable set in S. Normal graphs can be considered as closure of perfect graphs by means of co-normal products (K ̈orner [6]) and graph entropy (Czisz ́ar et al. [5]). Perfect graphs have been recently characterized as those graphs without odd holes and odd antiholes as induced subgraphs (Strong Perfect Graph Theorem, Chudnovsky et al. [3]). K ̈orner and de Simone [9] observed that C5,C7, and C7 are minimal not normal and conjectured, as generalization of the Strong Perfect Graph Theorem, that every C5, C7, C7-free graph is normal (Normal Graph Conjecture, K ̈orner and de Simone [9]). We prove this conjecture for a first class of graphs that generalize both odd holes and odd antiholes, the circulants, by characterizing all the normal circulants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-λ coloring of graphs and Conjecture Δ ^ 2

For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...

متن کامل

2-recognizability of the simple groups $B_n(3)$ and $C_n(3)$ by prime graph

Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

On the Decomposition of Vertex-Transitive Graphs into Multicycles

In this paper, we prove that every vertex-transitive graph can be expressed as the edge-disjoint union of symmetric graphs. We define a multicycle graph and conjecture that every vertex-transitive graph cam be expressed as the edge-disjoint union of multicycles. We verify this conjecture for several subclasses of vertextransitive graphs, including Cayley graphs, multidimensional circulants, and...

متن کامل

A note on Fouquet-Vanherpe’s question and Fulkerson conjecture

‎The excessive index of a bridgeless cubic graph $G$ is the least integer $k$‎, ‎such that $G$ can be covered by $k$ perfect matchings‎. ‎An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless‎ ‎cubic graph has excessive index at most five‎. ‎Clearly‎, ‎Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5‎, ‎so Fouquet and Vanherpe as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005