Tertiary structure formation in the hairpin ribozyme monitored by fluorescence resonance energy transfer.

نویسندگان

  • N G Walter
  • K J Hampel
  • K M Brown
  • J M Burke
چکیده

The complex formed by the hairpin ribozyme and its substrate consists of two independently folding domains which interact to form a catalytic structure. Fluorescence resonance energy transfer methods permit us to study reversible transitions of the complex between open and closed forms. Results indicate that docking of the domains is required for both the cleavage and ligation reactions. Docking is rate-limiting for ligation (2 min-1) but not for cleavage, where docking (0.5 min-1) precedes a rate-limiting conformational transition or slow-reaction chemistry. Strikingly, most modifications to the RNA (such as a G+1A mutation in the substrate) or reaction conditions (such as omission of divalent metal ion cofactors) which inhibit catalysis do so by preventing docking. This demonstrates directly that mutations and modifications which inhibit a step following substrate binding are not necessarily involved in catalysis. An improved kinetic description of the catalytic cycle is derived, including specific structural transitions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helical junctions as determinants for RNA folding: origin of tertiary structure stability of the hairpin ribozyme.

Helical junctions are ubiquitous structural elements that govern the folding and tertiary structure of RNAs. The tobacco ringspot virus hairpin ribozyme consists of two helix-loop-helix elements that lie on adjacent arms of a four-way junction. In the active form of the hairpin ribozyme, the loops are in proximity. The nature of the helical junction determines the stability of the hairpin riboz...

متن کامل

Energetics of hydrogen bond networks in RNA: hydrogen bonds surrounding G+1 and U42 are the major determinants for the tertiary structure stability of the hairpin ribozyme.

The hairpin ribozyme, a small catalytic RNA consisting of two helix-loop-helix motifs, serves as a paradigm for RNA folding. In the active conformer, the ribozyme is docked into a compact structure via loop-loop interactions. The crystal structure of the docked hairpin ribozyme shows an intricate network of hydrogen bonding interactions at the docking interface, mediated by the base, sugar, and...

متن کامل

Soft Interactions with Model Crowders and Non-canonical Interactions with Cellular Proteins Stabilize RNA Folding.

Living cells contain diverse biopolymers, creating a heterogeneous crowding environment, the impact of which on RNA folding is poorly understood. Here, we have used single-molecule fluorescence resonance energy transfer to monitor tertiary structure formation of the hairpin ribozyme as a model to probe the effects of polyethylene glycol and yeast cell extract as crowding agents. As expected, po...

متن کامل

A base change in the catalytic core of the hairpin ribozyme perturbs function but not domain docking.

The hairpin ribozyme is a small endonucleolytic RNA motif with potential for targeted RNA inactivation. It optimally cleaves substrates containing the sequence 5'-GU-3' immediately 5' of G. Previously, we have shown that tertiary structure docking of its two domains is an essential step in the reaction pathway of the hairpin ribozyme. Here we show, combining biochemical and fluorescence structu...

متن کامل

The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone.

BACKGROUND The catalytic activity of RNA enzymes is thought to require divalent metal ions, which are believed to facilitate RNA folding and to play a direct chemical role in the reaction. RESULTS We have found that the hammerhead, hairpin and VS ribozymes do not require divalent metal ions, their mimics such as [Co(NH3)6]3+, or even monovalent metal ions for efficient self-cleavage. The HDV ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 17 8  شماره 

صفحات  -

تاریخ انتشار 1998