Defining the interface between the C-terminal fragment of alpha-transducin and photoactivated rhodopsin.

نویسندگان

  • Christina M Taylor
  • Gregory V Nikiforovich
  • Garland R Marshall
چکیده

A novel combination of experimental data and extensive computational modeling was used to explore probable protein-protein interactions between photoactivated rhodopsin (R*) and experimentally determined R*-bound structures of the C-terminal fragment of alpha-transducin (Gt(alpha)(340-350)) and its analogs. Rather than using one set of loop structures derived from the dark-adapted rhodopsin state, R* was modeled in this study using various energetically feasible sets of intracellular loop (IC loop) conformations proposed previously in another study. The R*-bound conformation of Gt(alpha)(340-350) and several analogs were modeled using experimental transferred nuclear Overhauser effect data derived upon binding R*. Gt(alpha)(340-350) and its analogs were docked to various conformations of the intracellular loops, followed by optimization of side-chain spatial positions in both R* and Gt(alpha)(340-350) to obtain low-energy complexes. Finally, the structures of each complex were subjected to energy minimization using the OPLS/GBSA force field. The resulting residue-residue contacts at the interface between R* and Gt(alpha)(340-350) were validated by comparison with available experimental data, primarily from mutational studies. Computational modeling performed for Gt(alpha)(340-350) and its analogs when bound to R* revealed a consensus of general residue-residue interactions, necessary for efficient complex formation between R* and its Gt(alpha) recognition motif.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of the complex between transducin and photoactivated rhodopsin, a prototypical G-protein-coupled receptor.

Obtaining a reliable 3D model for the complex formed by photoactivated rhodopsin (R*) and its G-protein, transducin (Gtalphabetagamma), would significantly benefit the entire field of structural biology of G-protein-coupled receptors (GPCRs). In this study, we have performed extensive configurational sampling for the isolated C-terminal fragment of the alpha-subunit of transducin, Gtalpha 340-3...

متن کامل

Rhodopsin-transducin interface: studies with conformationally constrained peptides.

To probe the interaction between transducin (G(t)) and photoactivated rhodopsin (R*), 14 analog peptides were designed and synthesized restricting the backbone of the R*-bound structure of the C-terminal 11 residues of G(t)alpha derived by transferred nuclear Overhauser effect (TrNOE) NMR. Most of the analogs were able to bind R*, supporting the TrNOE structure. Improved affinities of constrain...

متن کامل

Regulation of retinal transducin by C-terminal peptides of rhodopsin.

Transducin is a multi-subunit guanine-nucleotide-binding protein that mediates signal coupling between rhodopsin and cyclic GMP phosphodiesterase in retinal rod outer segments. Whereas the T alpha subunit of transducin binds guanine nucleotides and is the activator of the phosphodiesterase, the T beta gamma subunit may function to link physically T alpha with photolysed rhodopsin. In order to d...

متن کامل

Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.

Quenching of phototransduction in retinal rod cells involves phosphorylation of photoactivated rhodopsin by the enzyme rhodopsin kinase followed by binding of the protein arrestin. Although it has been proposed that the mechanism of arrestin quenching of visual transduction is via steric exclusion of transducin binding to phosphorylated light-activated rhodopsin (P-Rh*), direct evidence for thi...

متن کامل

Crystal structure of a photoactivated deprotonated intermediate of rhodopsin.

The changes that lead to activation of G protein-coupled receptors have not been elucidated at the structural level. In this work we report the crystal structures of both ground state and a photoactivated deprotonated intermediate of bovine rhodopsin at a resolution of 4.15 A. In the photoactivated state, the Schiff base linking the chromophore and Lys-296 becomes deprotonated, reminiscent of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 92 12  شماره 

صفحات  -

تاریخ انتشار 2007