Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy.

نویسندگان

  • Jesung Park
  • Paritosh Pande
  • Sebina Shrestha
  • Fred Clubb
  • Brian E Applegate
  • Javier A Jo
چکیده

OBJECTIVE To investigate the potential of endogenous multispectral fluorescence lifetime imaging microscopy (FLIM) for biochemical characterization of human coronary atherosclerotic plaques. METHODS Endogenous multispectral FLIM imaging was performed on the lumen of 58 segments of postmortem human coronary artery. The fluorescence was separated into three emission bands targeting the three main arterial endogenous fluorophores (390±20 nm for collagen, 452±22.5 nm for elastin, and 550±20 for lipids). The fluorescence normalized intensity and average lifetime from each emission band was used to classify each pixel of an image as either "High-Collagen", "High-Lipids" or "Low-Collagen/Lipids" via multiclass Fisher's linear discriminant analysis. RESULTS Classification of plaques as either "High-Collagen", "High-Lipids" or "Low-Collagen/Lipids" based on the endogenous multispectral FLIM was achieved with a sensitivity/specificity of 96/98%, 89/99%, and 99/99%, respectively, where histopathology served as the gold standard. CONCLUSION The endogenous multispectral FLIM approach we have taken, which can readily be adapted for in vivo intravascular catheter based imaging, is capable of reliably identifying plaques with high content of either collagen or lipids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization

Most pathological conditions elicit changes in the tissue optical response that may be interrogated by one or more optical imaging modalities. Any single modality typically only furnishes an incomplete picture of the tissue optical response, hence an approach that integrates complementary optical imaging modalities is needed for a more comprehensive non-destructive and minimally-invasive tissue...

متن کامل

Application of non-negative matrix factorization to multispectral FLIM data analysis

Existing methods of interpreting fluorescence lifetime imaging microscopy (FLIM) images are based on comparing the intensity and lifetime values at each pixel with those of known fluorophores. This method becomes unwieldy and subjective in many practical applications where there are several fluorescing species contributing to the bulk fluorescence signal, and even more so in the case of multisp...

متن کامل

Multimodal characterization of compositional, structural and functional features of human atherosclerotic plaques

Detection of atherosclerotic plaque vulnerability has critical clinical implications for avoiding sudden death in patients with high risk of plaque rupture. We report on multimodality imaging of ex-vivo human carotid plaque samples using a system that integrates fluorescence lifetime imaging (FLIM), ultrasonic backscatter microscopy (UBM), and photoacoustic imaging (PAI). Biochemical compositio...

متن کامل

Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data.

Multispectral fluorescence lifetime imaging (m-FLIM) can potentially allow identifying the endogenous fluorophores present in biological tissue. Quantitative description of such data requires estimating the number of components in the sample, their characteristic fluorescent decays, and their relative contributions or abundances. Unfortunately, this inverse problem usually requires prior knowle...

متن کامل

Multispectral scanning time-resolved fluorescence spectroscopy (TRFS) technique for intravascular diagnosis

This study describes a scanning time-resolved fluorescence spectroscopy (TRFS) system designed to continuously acquire fluorescence emission and to reconstruct fluorescence lifetime images (FLIM) from a luminal surface by using a catheter-based optical probe with rotary joint and pull-back device. The ability of the system to temporally and spectrally resolve the fluorescence emission from tiss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Atherosclerosis

دوره 220 2  شماره 

صفحات  -

تاریخ انتشار 2012