The algebro-geometric solutions for Degasperis-Procesi hierarchy

نویسندگان

  • Yu Hou
  • Peng Zhao
  • Engui Fan
  • Zhijun Qiao
چکیده

Though completely integrable Camassa-Holm (CH) equation and Degasperis-Procesi (DP) equation are cast in the same peakon family, they possess the secondand third-order Lax operators, respectively. From the viewpoint of algebro-geometrical study, this difference lies in hyper-elliptic and non-hyper-elliptic curves. The non-hyper-elliptic curves lead to great difficulty in the construction of algebro-geometric solutions of the DP equation. In this paper, we derive the DP hierarchy with the help of Lenard recursion operators. Based on the characteristic polynomial of a Lax matrix for the DP hierarchy, we introduce a third order algebraic curve Kr−2 with genus r − 2, from which the associated Baker-Akhiezer functions, meromorphic function and Dubrovin-type equations are established. Furthermore, the theory of algebraic curve is applied to derive explicit representations of the theta function for the Baker-Akhiezer functions and the meromorphic function. In particular, the algebro-geometric solutions are obtained for all equations in the whole DP hierarchy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Degasperis-Procesi equation as a non-metric Euler equation

In this paper we present a geometric interpretation of the periodic Degasperis-Procesi equation as the geodesic flow of a right invariant symmetric linear connection on the diffeomorphism group of the circle. We also show that for any evolution in the family of b-equations there is neither gain nor loss of the spatial regularity of solutions. This in turn allows us to view the Degasperis-Proces...

متن کامل

ar X iv : 0 90 8 . 05 08 v 1 [ m at h - ph ] 4 A ug 2 00 9 THE DEGASPERIS - PROCESI EQUATION AS A NON - METRIC EULER EQUATION

In this paper we present a geometric interpretation of the periodic Degasperis-Procesi equation as the geodesic flow of a right invariant symmetric linear connection on the diffeomorphism group of the circle. We also show that for any evolution in the family of b-equations there is neither gain nor loss of the spatial regularity of solutions. This in turn allows us to view the Degasperis-Proces...

متن کامل

On Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method

The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...

متن کامل

On the Blow-up Structure for the Generalized Periodic Camassa-Holm and Degasperis- Procesi Equations

Considered herein are the generalized Camassa-Holm and Degasperis-Procesi equations in the spatially periodic setting. The precise blow-up scenarios of strong solutions are derived for both of equations. Several conditions on the initial data guaranteeing the development of singularities in finite time for strong solutions of these two equations are established. The exact blow-up rates are also...

متن کامل

A Numerical Scheme Using Multi-shockpeakons to Compute Solutions of the Degasperis-procesi Equation

We consider a numerical scheme for entropy weak solutions of the DP (Degasperis-Procesi) equation ut − uxxt + 4uux = 3uxuxx + uuxxx. Multi-shockpeakons, functions of the form

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014