The Characterization of Riordan Arrays and Sheffer-type Polynomial Sequences
نویسندگان
چکیده
Here we present a characterization of Sheffer-type polynomial sequences based on the isomorphism between the Riordan group and Sheffer group and the sequence characterization of Riordan arrays. We also give several alternative forms of the characterization of the Riordan group, Sheffer group and their subgroups. Formulas for the computation of the generating functions of Riordan arrays and Sheffer-type polynomial sequences from the characteristics are shown. Furthermore, the applications of the characteristics to lattice walks and recursive construction of Sheffer-type polynomial sequences are also given.
منابع مشابه
Riordan Arrays Associated with Laurent Series and Generalized Sheffer-Type Groups
A relationship between a pair of Laurent series and Riordan arrays is formulated. In addition, a type of generalized Sheffer groups is defined using Riordan arrays with respect to power series with non-zero coefficients. The isomorphism between a generalized Sheffer group and the group of the Riordan arrays associated with Laurent series is established. Furthermore, Appell, associated, Bell, an...
متن کاملGeneralized Riordan arrays
In this paper, we generalize the concept of Riordan array. A generalized Riordan array with respect to cn is an infinite, lower triangular array determined by the pair (g(t), f(t)) and has the generic element dn,k = [t/cn]g(t)(f(t))/ck, where cn is a fixed sequence of non-zero constants with c0 = 1. We demonstrate that the generalized Riordan arrays have similar properties to those of the class...
متن کاملCharacterization of (c)-Riordan Arrays, Gegenbauer-Humbert-type polynomial sequences, and (c)-Bell polynomials
Here presented are the definitions of (c)-Riordan arrays and (c)-Bell polynomials which are extensions of the classical Riordan arrays and Bell polynomials. The characterization of (c)-Riordan arrays by means of the Aand Z-sequences is given, which corresponds to a horizontal construction of a (c)Riordan array rather than its definition approach through column generating functions. There exists...
متن کاملRiordan Arrays, Sheffer Sequences and “Orthogonal” Polynomials
Riordan group concepts are combined with the basic properties of convolution families of polynomials and Sheffer sequences, to establish a duality law, canonical forms ρ(n,m) = ( n m ) cFn−m(m), c 6= 0, and extensions ρ(x, x − k) = (−1) xcFk(x), where the Fk(x) are polynomials in x, holding for each ρ(n,m) in a Riordan array. Examples ρ(n,m) = ( n m ) Sk(x) are given, in which the Sk(x) are “or...
متن کاملIdentities on Bell polynomials and Sheffer sequences
In this paper, we study exponential partial Bell polynomials and Sheffer sequences. Two new characterizations of Sheffer sequences are presented, which indicate the relations between Sheffer sequences and Riordan arrays. Several general identities involving Bell polynomials and Sheffer sequences are established, which reduce to some elegant identities for associated sequences and cross sequences.
متن کامل