Phosphorylation of P42/P44 MAP kinase and DNA fragmentation in the rat perforant pathway stimulation model of limbic epilepsy.
نویسندگان
چکیده
The intracellular signaling pathways associated with neuronal injury after perforant pathway stimulation of the rodent hippocampus have not been examined. To determine whether activation of the p42/p44 (Erk1/2) MAP kinase (MAPK) phosphorylation cascade is linked to neuronal injury after perforant pathway stimulation (PPS), we stained for phosphorylated Erk1/2 (P-Erk1/2) and for DNA fragmentation, a marker of cell death after PPS. Eighteen Sprague-Dawley rats underwent PPS for 6 (n=6), 12 (n=6), or 24 (n=6) h and were sacrificed either immediately (n=9) or 48 h (n=9) after stimulation. Sham-operated non-stimulated control animals (n=2) and control animals receiving low frequency stimulation only (n=4) were also examined. Brain sections were stained for DNA fragmentation and P-Erk1/2. DNA fragmentation was evident only in granule cells and CA3 pyramidal cells of the stimulated side 48 h after 24 h of PPS. PPS resulted in robust phosphorylation of Erk1/2 that displayed a stereotyped timecourse, appearing first in hilar neurons on the ipsilateral side and later in hilar neurons, granule cells, hippocampal pyramidal and non-neuronal cell populations on both the stimulated and contralateral sides. Both Erk1/2 phosphorylation and DNA fragmentation show definite and reproducible staining patterns after PPS that vary based on duration of stimulation. Populations displaying Erk1/2 activation appeared to differ from those showing DNA fragmentation and neuronal injury.
منابع مشابه
Platelet-derived growth factor-BB (PDGF-BB) regulation of migration and focal adhesion kinase phosphorylation in rabbit aortic vascular smooth muscle cells: roles of phosphatidylinositol 3-kinase and mitogen-activated protein kinases.
OBJECTIVE Phosphatidylinositol 3'-kinase (PI3-kinase) is implicated in cell migration and focal adhesion kinase (FAK) phosphorylation. In contrast, it has been proposed that mitogen-activated protein (MAP) kinases are essential for proliferation but may be dissociated from chemotactic signalling. We investigated the roles of PI3-kinase and p42/p44 MAP kinases in cell migration and FAK tyrosine ...
متن کاملGranulocyte-macrophage colony-stimulating factor, interleukin-3, and steel factor induce rapid tyrosine phosphorylation of p42 and p44 MAP kinase.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), Interleukin-3 (IL-3), and Steel Factor (SF) induce proliferation of hematopoietic cells through binding to specific, high-affinity, cell surface receptors. However, little is known about postreceptor signal transduction pathways. In previous studies, we noted that each of these three factors could independently support proliferation of ...
متن کاملInvolvement of SAPK/JNK in basic fibroblast growth factor-induced vascular endothelial growth factor release in osteoblasts.
We previously reported that basic fibroblast growth factor (FGF-2) activates p44/p42 mitogen-activated protein (MAP) kinase resulting in the stimulation of vascular endothelial growth factor (VEGF) release in osteoblast-like MC3T3-E1 cells and that FGF-2-activated p38 MAP kinase negatively regulates VEGF release. In the present study, we investigated the involvement of stress-activated protein ...
متن کاملOxLDL induces mitogen-activated protein kinase activation mediated via PI3-kinase/Akt in vascular smooth muscle cells.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK acti...
متن کاملPlatelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase.
The mechanism used by the platelet-derived growth factor receptor (PDGFR) to activate the mitogen-activated- protein-kinase (p42/p44 MAPK) pathway was investigated in cultured airway smooth muscle (ASM) cells. We have found that pertussis toxin (PTX, which was used to inactivate the heterotrimeric G-protein Gi) induced an approx. 40-50% decrease in the activation of c-Src and p42/p44 MAPK by PD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 933 1 شماره
صفحات -
تاریخ انتشار 2002