Duodenal nutrient infusions differentially affect sham feeding and Fos expression in rat brain stem.
نویسندگان
چکیده
Duodenal infusions of macronutrients inhibit sham and normal feeding. Neural substrates of this response were studied by infusing glucose, linoleic acid, an amino acid mixture, saline, or water into the duodenum of unanesthetized rats and then measuring sham feeding of 30% sucrose or Fos expression in the dorsal vagal complex. Linoleic acid and amino acids (both 1.5 kcal) and glucose (4.5 kcal) suppressed sham feeding relative to control infusions, and all three macronutrients triggered Fos expression in the nucleus of the solitary tract and area postrema. Although there were significant quantitative differences, the subnuclear distribution pattern of Fos-expressing neurons was not different for the three macronutrients and was largely localized to the medial, dorsomedial, and commissural subnuclei of the nucleus of the solitary tract and the area postrema. Linoleic acid suppressed intake and stimulated Fos expression similarly to glucose infusions of three times the caloric value. Amino acids strongly suppressed sham feeding but triggered relatively little Fos expression. These results indicate that the intake-suppressing potency of duodenal macronutrients is dependent on nutrient type, rather than simply caloric value, and that amino acids, although potent inducers of satiety, affect ingestion by processes different from those subserving lipids and carbohydrates. Furthermore, the similar patterns of neuronal activation after different duodenal infusions may indicate a large degree of convergence at the level of primary and second-order sensory neurons, whereas the distinctly different pattern obtained earlier with gastric distension indicates partially separate neural pathways for satiety signals generated by duodenal nutrients and gastric mechanoreceptors.
منابع مشابه
Meal-related stimuli differentially induce c-Fos activation in the nucleus of the solitary tract.
Feedback signals arising from the oral cavity and upper gastrointestinal tract contribute to the control of meal size. To assess how these signals are integrated at central sites involved in ingestive control, we compared levels of c-Fos activation in the nucleus of the solitary tract (NTS) and area postrema (AP) in response to meal ingestion or gastric and duodenal infusions in the rat. Ingest...
متن کاملEffects of peripheral CCK receptor blockade on feeding responses to duodenal nutrient infusions in rats.
Type A cholecystokinin receptor (CCKAR) antagonists differing in blood-brain barrier permeability were used to test the hypothesis that duodenal delivery of protein, carbohydrate, and fat produces satiety in part by an essential CCK action at CCKARs located peripheral to the blood-brain barrier. Fasted rats with open gastric fistulas received devazepide (1 mg/kg iv) or A-70104 (700 nmol. kg(-1)...
متن کاملIntrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats
Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in consciou...
متن کاملEffect of vertical sleeve gastrectomy on food selection and satiation in rats.
Vertical sleeve gastrectomy (VSG) is a restrictive procedure that reduces food intake to produce weight loss. Here we assess volume and nutrient effects on the ingestive behavior of VSG and sham surgery animals. Rats given access to Ensure or pelleted chow were used to determine if liquid foods would adversely affect weight loss after surgery. Volume effects were studied by altering the caloric...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 274 6 Pt 2 شماره
صفحات -
تاریخ انتشار 1998