Enhancement of Angiogenesis by Ultrasound-Targeted Microbubble Destruction Combined with Nuclear Localization Signaling Peptides in Canine Myocardial Infarction

نویسندگان

  • Jingjing Cui
  • Qing Deng
  • Qing Zhou
  • Sheng Cao
  • Nan Jiang
  • Yijia Wang
  • Jinling Chen
  • Bo Hu
  • Tuantuan Tan
چکیده

Objective This study aimed to develop a gene delivery system using ultrasound-targeted microbubbles destruction (UTMD) combined with nuclear localization signal (NLS) and investigate its efficacy and safety for therapeutic angiogenesis in canine myocardial infarction (MI) model. Methods Fifty MI dogs were randomly divided into 5 groups and transfected with Ang-1 gene plasmid: (i) group A: only injection of microbubbles and Ang-1 plasmid; (ii) group B: only UTMD mediated gene transfection; (iii) group C: UTMD combined with classical NLS mediated gene transfection; (iv) group D: UTMD combined with mutational NLS mediated transfection; and (v) group E: UTMD combined with classical NLS in the presence of a nucleus transport blocker. The mRNA and protein expression of Ang-1 gene, microvessel density (MVD) cardiac troponin I (cTnI), and cardiac function were determined after transfection. Results The expression of mRNA and protein of Ang-1 gene in group C was significantly higher than that of the other groups (all P < 0.01). The MVD of group C was 10.2-fold of group A and 8.1-fold of group E (P < 0.01). The cardiac function in group C was significant improvement without cTnI rising. Conclusions The gene delivery system composed of UTMD and NLS is efficient and safe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury

Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-r...

متن کامل

Ultrasound combined with targeted cationic microbubble-mediated angiogenesis gene transfection improves ischemic heart function

The present study aimed to construct targeted cationic microbubbles (TCMBs) by synthesizing cationic microbubbles conjugated to an intercellular adhesion molecule-1 (ICAM-1) antibody, and then to use the TCMBs to deliver the angiopoietin-1 (Ang-1) gene into infarcted heart tissue using ultrasound-mediated microbubble destruction. It was hypothesized that the TCMBs would accumulate in higher num...

متن کامل

Ultrasound-mediated microbubble destruction enhances the therapeutic effect of intracoronary transplantation of bone marrow stem cells on myocardial infarction.

OBJECTIVE The combination of intracoronary transplantation and ultrasound-mediated microbubble destruction may promote effective and accurate delivery of bone marrow stem cells (BMSCs) into the infarct zone. To test this hypothesis in this study we examined the effectiveness of ultrasound-mediated microbubble destruction in combination with intracoronary transplantation of BMSCs for the treatme...

متن کامل

Enhanced homing of mesenchymal stem cells to the ischemic myocardium by ultrasound-targeted microbubble destruction.

In recent years, ultrasound-targeted microbubble destruction (UTMD) has been utilised for the targeted delivery of stem cells. We tested the effects of the myocardial micro-environment changes induced by UTMD on promoting the homing of mesenchymal stem cells (MSCs) to the ischemic myocardium. Dogs were randomly divided into two groups and treated with or without UTMD after the establishment of ...

متن کامل

Localized Delivery of shRNA against PHD2 Protects the Heart from Acute Myocardial Infarction through Ultrasound-Targeted Cationic Microbubble Destruction

Hypoxia-inducible factor 1α (HIF-1α) plays a critical protective role in ischemic heart disease. Under normoxic conditions, HIF-1α was degraded by oxygen-dependent prolyl hydroxylase-2 (PHD2). Gene therapy has become a promising strategy to inhibit the degradation of HIF-1α and to improve cardiac function after ischemic injury. However, conventional gene delivery systems are difficult to achiev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017