Maximal Entropy Measures for Piecewise Affine Surface Homeomorphisms

نویسنده

  • JÉRÔME BUZZI
چکیده

We study the dynamics of piecewise affine surface homeomorphisms from the point of view of their entropy. Under the assumption of positive topological entropy, we establish the existence of finitely many ergodic and invariant probability measures maximizing entropy and prove a multiplicative lower bound for the number of periodic points. This is intended as a step towards the understanding of surface diffeomorphisms. We proceed by building a jump transformation, using not first returns but carefully selected “good” returns to dispense with Markov partitions. We control these good returns through some entropy and ergodic arguments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Continuous, Piecewise Affine Surface Map with No Measure of Maximal Entropy

It is known that piecewise affine surface homeomorphisms always have measures of maximal entropy. This is easily seen to fail in the discontinuous case. Here we describe a piecewise affine, globally continuous surface map with no measure of maximal entropy.

متن کامل

Approximation of Hölder continuous homeomorphisms by piecewise affine homeomorphisms

This paper is concerned with the problem of approximating a homeomorphism by piecewise affine homeomorphisms. The main result is as follows: every homeomorphism from a planar domain with a polygonal boundary to R that is globally Hölder continuous of exponent α ∈ (0, 1], and whose inverse is also globally Hölder continuous of exponent α can be approximated in the Hölder norm of exponent β by pi...

متن کامل

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

Enlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise

This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...

متن کامل

The topological entropy of iterated piecewise affine maps is uncomputable

We show that it is impossible to compute (or even to approximate) the topological entropy of a continuous piecewise affine function in dimension four. The same result holds for saturated linear functions in unbounded dimension. We ask whether the topological entropy of a piecewise affine function is always a computable real number, and conversely whether every non-negative computable real numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007