Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities
نویسندگان
چکیده
PURPOSE The aim of the present study was to develop nanoprobes with theranostic features, including - at the same time - photoacoustic, near-infrared (NIR) optical imaging, and photothermal properties, in a versatile and stable core-shell silica-polyethylene glycol (PEG) nanoparticle architecture. MATERIALS AND METHODS We synthesized core-shell silica-PEG nanoparticles by a one-pot direct micelles approach. Fluorescence emission and photoacoustic and photothermal properties were obtained at the same time by appropriate doping with triethoxysilane-derivatized cyanine 5.5 (Cy5.5) and cyanine 7 (Cy7) dyes. The performances of these nanoprobes were measured in vitro, using nanoparticle suspensions in phosphate-buffered saline and blood, dedicated phantoms, and after incubation with MDA-MB-231 cells. RESULTS We obtained core-shell silica-PEG nanoparticles endowed with very high colloidal stability in water and in biological environment, with absorption and fluorescence emission in the NIR field. The presence of Cy5.5 and Cy7 dyes made it possible to reach a more reproducible and higher doping regime, producing fluorescence emission at a single excitation wavelength in two different channels, owing to the energy transfer processes within the nanoparticle. The nanoarchitecture and the presence of both Cy5.5 and Cy7 dyes provided a favorable agreement between fluorescence emission and quenching, to achieve optical imaging and photoacoustic and photothermal properties. CONCLUSION We obtained rationally designed nanoparticles with outstanding stability in biological environment. At appropriate doping regimes, the presence of Cy5.5 and Cy7 dyes allowed us to tune fluorescence emission in the NIR for optical imaging and to exploit quenching processes for photoacoustic and photothermal capabilities. These nanostructures are promising in vivo theranostic tools for the near future.
منابع مشابه
A Laser-Activated Biocompatible Theranostic Nanoagent for Targeted Multimodal Imaging and Photothermal Therapy
Multifunctional nanoparticles have been reported for cancer detection and treatment currently. However, the accurate diagnosis and efficient treatment for tumors are still not satisfied. Here we report on the development of targeted phase change multimodal polymeric nanoparticles for the imaging and treatment of HER2-positive breast cancer. METHODS We evaluated the multimodal imaging capabili...
متن کاملGold-silica quantum rattles for multimodal imaging and therapy.
Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanopar...
متن کاملPhotoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes
Photoswitchable fluorescent proteins with controllable light-dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid...
متن کاملMulti-dye theranostic nanoparticle platform for bioimaging and cancer therapy
BACKGROUND Theranostic nanomaterials composed of fluorescent and photothermal agents can both image and provide a method of disease treatment in clinical oncology. For in vivo use, the near-infrared (NIR) window has been the focus of the majority of studies, because of greater light penetration due to lower absorption and scatter of biological components. Therefore, having both fluorescent and ...
متن کاملFacile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy.
Recently, magnetic photothermal nanomaterials have emerged as a new class of bio-nanomaterials for application in cancer diagnosis and therapy. Hence, we developed a new kind of magnetic nanomaterials, iron diselenide (FeSe(2)) nanoparticles, for multimodal imaging-guided photothermal therapy (PTT) to improve the efficacy of cancer treatment. By controlling the reaction time and temperature, Fe...
متن کامل