Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix: From Point Correspondences to 3D Measurements

نویسندگان

  • Manolis I.A. LOURAKIS
  • Rachid DERICHE
چکیده

This paper deals with a fundamental problem in motion and stereo analysis, namely that of determining the camera intrinsic calibration parameters. A novel method is proposed that follows the autocalibration paradigm, according to which calibration is achieved not with the aid of a calibration pattern but by observing a number of image features in a set of successive images. The proposed method relies upon the Singular Value Decomposition of the fundamental matrix, which leads to a particularly simple form of the Kruppa equations. In contrast to the classical formulation that yields an over-determined system of constraints, the derivation proposed here provides a straightforward answer to the problem of determining which constraints to employ among the set of available ones. Moreover, the derivation is a purely algebraic one, without a need for resorting to the somewhat non-intuitive geometric concept of the absolute conic. Apart from the fundamental matrix itself, no other quantities that can be extracted from it (e.g. the epipoles) are needed for the derivation. Experimental results from extensive simulations and several image sequences demonstrate the effectiveness of the proposed method in accurately estimating the intrinsic calibration matrices. It is also shown that the computed intrinsic calibration matrices are sufficient for recovering 3D motion and performing metric measurements from uncalibrated images. Key-words: Self-Calibration, Kruppa Equations, 3D Measurements, Motion Analysis, Stereo, Structure from Motion. This work was funded in part under the VIRGO research network (EC Contract No ERBFMRX-CT96-0049) of the TMR Programme. Auto-Calibration par Décomposition en Valeurs Singulières de la Matrice Fondamentale: De l’Appariement de Points aux Mesures 3D Résumé : Ce rapport traite du problème fondamental de l’auto-calibration d’une caméra à partir d’un ensemble de points appariés entre différentes images. Une méthode basée sur les équations de Kruppa, bien connues dans le cadre de cette application, est développée. On fait usage de la décomposition en valeurs singulières de la matrice fondamentale pour dériver de manière purement algébrique des équations de Kruppa remarquablement simplifiées. Ceci permet en particulier de resoudre le problème du choix des deux équations de Kruppa à utiliser parmi l’ensemble plus grand des équations dérivées par la méthode classique. Dans cette méthode, les équations sont dérivées très simplement, on ne fait nullement usage de l’interprétation géometrique à base de la conique absolue, ni de celle liée au plan à l’infini, et on n’utilise pas explicitement les épipoles, dont l’estimation est connue pour être instable. Enfin et surtout, cette méthode est mise en oeuvre, comparée et testée avec succès pour retrouver les paramètres intrinsèques de différentes caméras à partir de données synthétiques bruitées et de plusieures images réelles. On montre aussi que la qualité des résultats obtenus permet de valider remarquablement l’approche jusqu’à l’obtention de mesures 3D fiables à partir d’images. Mots-clés : Auto-Calibration, Equations de Kruppa, Mesures 3D, Analyse du mouvement, Stéréovision, Structure à partir du mouvement. Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix: From Point Correspondences to 3D Measurements 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homework - 8

In this homework, we reconstruct the 3D structure of an image using the point correspondences obtained by edge detection and NCC measure. There are a series of steps involved to reconstruct the 3D structure which will be discussed in the next section. Algorithm: Although its possible to reconstruct the 3D structure using multiple images, for the sake of simplicity, I am using two images taken u...

متن کامل

Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix

This paper deals with a fundamental problem in motion and stereo analysis, namely that of determining the camera intrinsic calibration parameters. A novel method is proposed that follows the autocalibration paradigm, according to which calibration is achieved not with the aid of a calibration pattern but by observing a number of image features in a set of successive images. The proposed method ...

متن کامل

Camera Self-Calibration Using the Kruppa Equations and the SVD of the Fundamental Matrix: The Case of Varying Intrinsic Parameters

Estimation of the camera intrinsic calibration parameters is a prerequisite to a wide variety of vision tasks related to motion and stereo analysis. A major breakthrough related to the intrinsic calibration problem was the introduction in the early nineties of the autocalibration paradigm, according to which calibration is achieved not with the aid of a calibration pattern but by observing a nu...

متن کامل

Camera Calibration for 3D Leaf-Image Reconstruction using Singular Value Decomposition

Features of leaves can be more precisely captured using 3D imaging. A 3D leaf image is reconstructed using two 2D images taken using stereo cameras. Reconstructing 3D from 2D images is not straightforward. One of the important steps to improve accuracy is to perform camera calibration correctly. By calibrating camera precisely, it is possible to project measurement of distances in real world to...

متن کامل

Enhancing Sensor Measurements through Wide Baseline Stereo Images

In this paper, we suggest an algorithm to enhance the accuracy of sensor measurements representing camera parameters. The process proposed is based solely on a pair of wide baseline (or sparse view) images. We use the so-called JUDOCA operator to extract junctions. This operator produces junctions in terms of locations as well as orientations. Such an information is used to estimate an affine t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999