Representations of the Quantum Teichmüller Space and Invariants of Surface Diffeomorphisms

نویسنده

  • Xiaobo Liu
چکیده

— We investigate the representation theory of the polynomial core T S of the quantum Teichmüller space of a punctured surface S. This is a purely algebraic object, closely related to the combinatorics of the simplicial complex of ideal cell decompositions of S. Our main result is that irreducible finite-dimensional representations of T S are classified, up to finitely many choices, by group homomorphisms from the fundamental group π1(S) to the isometry group of the hyperbolic 3–space H. We exploit this connection between algebra and hyperbolic geometry to exhibit invariants of diffeomorphisms of S.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 07 08 6 v 1 [ m at h . G T ] 6 J ul 2 00 4 REPRESENTATIONS OF THE QUANTUM TEICHMÜLLER SPACE AND INVARIANTS OF SURFACE DIFFEOMORPHISMS

— We investigate the representation theory of the polynomial core T S of the quantum Teichmüller space of a punctured surface S. This is a purely algebraic object, closely related to the combinatorics of the simplicial complex of ideal cell decompositions of S. Our main result is that irreducible finite-dimensional representations of T S are classified, up to finitely many choices, by group hom...

متن کامل

Quantum Hyperbolic Invariants for Diffeomorphisms of Small Surfaces

An earlier article [1] introduced new invariants for pseudo-Anosov diffeomorphisms of surface, based on the representation theory of the quantum Teichmüller space. We explicity compute these quantum hyperbolic invariants in the case of the 1–puncture torus and the 4–puncture sphere.

متن کامل

Quantum Teichmüller spaces and Kashaev’s 6j –symbols

The Kashaev invariants of 3–manifolds are based on 6j –symbols from the representation theory of the Weyl algebra, a Hopf algebra corresponding to the Borel subalgebra of Uq.sl.2;C// . In this paper, we show that Kashaev’s 6j –symbols are intertwining operators of local representations of quantum Teichmüller spaces. This relates Kashaev’s work with the theory of quantum Teichmüller space, which...

متن کامل

The Moduli Space of a Punctured Surface and Perturbative Series

0. Introduction. Let F denote the oriented genus g surface with s punctures, 2g — 2 + s > 0 , s > l , and choose a distinguished puncture P of F*. Let Tg be the Teichmüller space of conformai classes of complete finitearea metrics on F* (see [A]), and let MCg denote the mapping class group of orientation-preserving difFeomorphisms of F (fixing P) modulo isotopy (see [B]). When 0, s are understo...

متن کامل

Quantum Teichmüller Theory and Representations of the Pure Braid Group

We adapt some of the methods of quantum Teichmüller theory to construct a family of representations of the pure braid group of the sphere. This article presents a variation of the constructions of [2, 3] on the finite-dimensional representation theory of the quantum Teichmüller space. In these two earlier articles, the author and his collaborators considered the quantum Teichmüller space T S of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008