An LPCC approach to nonconvex quadratic programs
نویسندگان
چکیده
Filling a gap in nonconvex quadratic programming, this paper shows that the global resolution of a feasible quadratic program (QP), which is not known a priori to be bounded or unbounded below, can be accomplished in finite time by solving a linear program with linear complementarity constraints, i.e., an LPCC. Alternatively, this task can be divided into two LPCCs: the first confirms whether the QP is bounded below on the feasible set and, if not, computes a feasible ray on which the QP is unbounded; the second LPCC computes a globally optimal solution if it exists, by identifying a stationary point that yields the best quadratic objective value. In turn, the global resolution of these LPCCs can be accomplished by a parameter-free, mixed integerprogramming based, finitely terminating algorithm developed recently by the authors, which can be enhanced in this context by a new kind of valid cut derived from the second-order conditions of the QP and by exploiting the special structure of the LPCCs. Throughout, our treatment makes no boundedness assumption of the QP; this is a significant departure from much of the existing literature which consistently employs the boundedness of the feasible set as a blanket assumption. The general theory is illustrated by 3 classes of indefinite problems: QPs with simple upper and lower bounds (existence of optimal solutions is guaranteed); same QPs with an additional inequality constraint (extending the case of simple bound constraints); and nonnegatively constrained copositive QPs (no guarantee of the existence of an optimal solution).
منابع مشابه
AFRL-OSR-VA-TR-2014-0126 Global Resolution of Convex Programs with Complementarity Constraints
Quadratic Convex Reformulation (QCR) is a technique that has been proposed for binary and mixed integer quadratic programs. In this paper, we extend the QCR method to convex quadratic programs with linear complementarity constraints (QPCCs). Due to the complementarity relationship between the nonnegative variables y and w, a term yDw can be added to the QPCC objective function, where D is a non...
متن کاملOn linear programs with linear complementarity constraints
The paper is a manifestation of the fundamental importance of the linear program with linear complementarity constraints (LPCC) in disjunctive and hierarchical programming as well as in some novel paradigms of mathematical programming. In addition to providing a unified framework for bilevel and inverse linear optimization, nonconvex piecewise linear programming, indefinite quadratic programs, ...
متن کاملSolving Linear Programs with Complementarity Constraints using Branch-and-Cut
A linear program with linear complementarity constraints (LPCC) requires the minimization of a linear objective over a set of linear constraints together with additional linear complementarity constraints. This class has emerged as a modeling paradigm for a broad collection of problems, including bilevel programs, Stackelberg games, inverse quadratic programs, and problems involving equilibrium...
متن کاملGlobal Resolution of Convex Programs with Complementarity Constraints
Filling a gap in nonconvex quadratic programming, this paper shows that the global resolution of a feasible quadratic program (QP), which is not known a priori to be bounded or unbounded below, can be accomplished in finite time by solving two linear programs with linear complementarity constraints, i.e., LPCCs. Specifically, this task can be divided into two LPCCs: the first confirms whether t...
متن کاملSDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 133 شماره
صفحات -
تاریخ انتشار 2012