Point Clouds: Lidar versus 3D Vision
نویسنده
چکیده
Novel automated photogrammetry is based on four innovations. First is the cost-free increase of overlap between images when sensing digitally. Second is an improved radiometry. Third is multi-view matching. Fourth is the Graphics Processing Unit (GPU), making complex algorithms for image matching very practical. These innovations lead to improved automation of the photogrammetric workflow so that point clouds are created at sub-pixel accuracy, at very dense intervals, and in near real-time, thereby eroding the unique selling proposition of lidar scanners. Two test projects compare point clouds from aerial and street-side lidar systems with those created from images. We show that the photogrammetric accuracy compares well with the lidar-method, yet the density of surface points is much higher from images, and the throughput is commensurate with a fully automated all-digital approach. Beyond this density, we identify 15 additional advantages of the photogrammetric approach.
منابع مشابه
3D Scene Reconstruction Using Omnidirectional Vision and LiDAR: A Hybrid Approach
In this paper, we propose a novel approach to obtain accurate 3D reconstructions of large-scale environments by means of a mobile acquisition platform. The system incorporates a Velodyne LiDAR scanner, as well as a Point Grey Ladybug panoramic camera system. It was designed with genericity in mind, and hence, it does not make any assumption about the scene or about the sensor set-up. The main n...
متن کاملStereo Image Point Cloud and Lidar Point Cloud Fusion for the 3d Street Mapping
Combining active and passive imaging sensors enables creating a more detailed 3D model of the real world. Then, these 3D data can be used for various applications, such as city mapping, indoor navigation, autonomous vehicles, etc. Typically, LiDAR and camera as imaging sensors are installed on these systems. Both of these sensors have advantages and drawbacks. Thus, LiDAR sensor directly provid...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملGEOBIA methods for LiDAR obtained point clouds
List studenata Geodetskog fakulteta Sveučilišta u Zagrebu Summary: This paper critically analyses the state of the art provided in today’s scientific »market of knowledge« concerning the subject of object delineation from LiDAR obtained 3D point clouds. Such approach became a very popular subject in many scientific fields (forestry, geography, archaeology, etc.). The author will give multiple e...
متن کاملBuilding Change Detection Using Old Aerial Images and New LiDAR Data
Building change detection is important for urban area monitoring, disaster assessment and updating geo-database. 3D information derived from image dense matching or airborne light detection and ranging (LiDAR) is very effective for building change detection. However, combining 3D data from different sources is challenging, and so far few studies have focused on building change detection using b...
متن کامل