FOURTH ORDER EQUATIONS IN CONFORMAL GEOMETRY by Sun - Yung

نویسندگان

  • Sun-Yung A. Chang
  • Paul C. Yang
چکیده

— In this article we review some recent work on fourth order equations in conformal geometry of three and four dimensions. We discuss an existence result for a Yamabe-type equation in dimension three. We examine a generalization of the Cohn-Vossen inequality to dimension four. Finally, we review an application of the fourth order equation to a fully nonlinear equation in dimension four that involves the Ricci tensor. Résumé (Équations d’ordre quatre en géométrie conforme). — Dans cet article, nous présentons un travail récent sur des équations d’ordre quatre en géométrie conforme de dimensions trois et quatre. On présente un résultat d’existence d’une équation de type Yamabe en dimension trois. On examine une généralisation de l’inégalité de Cohn-Vossen en dimension quatre. Finalement, nous donnons une application, en dimension quatre, de l’équation d’ordre quatre à une équation non linéaire faisant intervenir le tenseur de Ricci.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Progress in Conformal Geometry

In this paper we describe our current research in the theory of partial differential equations in conformal geometry. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism ty...

متن کامل

Recurrent metrics in the geometry of second order differential equations

Given a pair (semispray $S$, metric $g$) on a tangent bundle, the family of nonlinear connections $N$ such that $g$ is recurrent with respect to $(S, N)$ with a fixed recurrent factor is determined by using the Obata tensors. In particular, we obtain a characterization for a pair $(N, g)$ to be recurrent as well as for the triple $(S, stackrel{c}{N}, g)$ where $stackrel{c}{N}$ is the canonical ...

متن کامل

Fractional Laplacian in conformal geometry

In this note, we study the connection between the fractional Laplacian operator that appeared in the recent work of Caffarelli and Silvestre and a class of conformally covariant operators in conformal geometry. © 2010 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000