The infinitary lambda calculus of the infinite eta Böhm trees

نویسندگان

  • Paula Severi
  • Fer-Jan de Vries
چکیده

In this paper, we introduce a strong form of eta reduction called etabang that we use to construct a confluent and normalising infinitary lambda calculus, of which the normal forms correspond to Barendregt’s infinite eta Böhm trees. This new infinitary perspective on the set of infinite eta Böhm trees allows us to prove that the set of infinite eta Böhm trees is a model of the lambda calculus. The model is of interest because it has the same local structure as Scott’s D∞-models, i.e. two finite lambda terms are equal in the infinite eta Böhm model if and only if they have the same interpretation in Scott’s D∞-models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separability of Infinite Lambda Terms

Infinite lambda calculi extend finite lambda calculus with infinite terms and transfinite reduction. In this paper we extend some classical results of finite lambda calculus to infinite terms. The first result we extend to infinite terms is Böhm Theorem which states the separability of two finite βη-normal forms. The second result we extend to infinite terms is the equivalence of the prefix rel...

متن کامل

An Extensional Böhm Model

We show the existence of an infinitary confluent and normalising extension of the finite extensional lambda calculus with beta and eta. Besides infinite beta reductions also infinite eta reductions are possible in this extension, and terms without head normal form can be reduced to bottom. As corollaries we obtain a simple, syntax based construction of an extensional Böhm model of the finite la...

متن کامل

Continuity and Discontinuity in Lambda Calculus

This paper studies continuity of the normal form and the context operators as functions in the infinitary lambda calculus. We consider the Scott topology on the cpo of the finite and infinite terms with the prefix relation. We prove that the only continuous parametric trees are Böhm and Lévy–Longo trees. We also prove a general statement: if the normal form function is continuous then so is the...

متن کامل

Highlights in infinitary rewriting and lambda calculus

We present some highlights from the emerging theory of infinitary rewriting, both for first-order term rewriting systems and λ-calculus. In the first section we introduce the framework of infinitary rewriting for first-order rewrite systems, so without bound variables. We present a recent observation concerning the continuity of infinitary rewriting. In the second section we present an excursio...

متن کامل

An Alpha-Corecursion Principle for the Infinitary Lambda Calculus

Gabbay and Pitts proved that lambda-terms up to alphaequivalence constitute an initial algebra for a certain endofunctor on the category of nominal sets. We show that the terms of the infinitary lambda-calculus form the final coalgebra for the same functor. This allows us to give a corecursion principle for alpha-equivalence classes of finite and infinite terms. As an application, we give corec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical Structures in Computer Science

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2017