Leucine-rich repeat kinase 2 regulates Sec16A at ER exit sites to allow ER-Golgi export.
نویسندگان
چکیده
Leucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson's disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER-Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES). LRRK2 interacted and co-localized with Sec16A, a key protein in the formation of ERES. Lrrk2 depletion caused a dispersion of Sec16A from ERES and impaired ER export. In neurons, LRRK2 and Sec16A showed extensive co-localization at the dendritic ERES (dERES) that locally regulate the transport of proteins to the dendritic spines. A loss of Lrrk2 affected the association of Sec16A with dERES and impaired the activity-dependent targeting of glutamate receptors onto the cell/synapse surface. Furthermore, the PD-related LRRK2 R1441C missense mutation in the GTPase domain interfered with the interaction of LRRK2 with Sec16A and also affected ER-Golgi transport, while LRRK2 kinase activity was not required for these functions. Therefore, our findings reveal a new physiological function of LRRK2 in ER-Golgi transport, suggesting ERES dysfunction may contribute to the pathogenesis of PD.
منابع مشابه
MAIGO5 functions in protein export from Golgi-associated endoplasmic reticulum exit sites in Arabidopsis.
Plant cells face unique challenges to efficiently export cargo from the endoplasmic reticulum (ER) to mobile Golgi stacks. Coat protein complex II (COPII) components, which include two heterodimers of Secretory23/24 (Sec23/24) and Sec13/31, facilitate selective cargo export from the ER; however, little is known about the mechanisms that regulate their recruitment to the ER membrane, especially ...
متن کاملSec16A defines the site for vesicle budding from the endoplasmic reticulum on exit from mitosis.
Mitotic inhibition of COPII-dependent export of proteins from the endoplasmic reticulum results in disassembly of the Golgi complex. This ensures ordered inheritance of organelles by the two daughter cells. Reassembly of the Golgi is intimately linked to the re-initiation of ER export on exit from mitosis. Here, we show that unlike all other COPII components, which are cytosolic during metaphas...
متن کاملCharacterization of human Sec16B: indications of specialized, non-redundant functions
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway and from here newly synthesized proteins and lipids are delivered to the Golgi. The selective cargo export from the ER is mediated by COPII-assembly at specific sites of the ER, the so-called transitional ER (tER). The peripheral membrane protein Sec16, first identified in yeast, localizes to transitional ER an...
متن کاملSec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells.
Sec16 plays a key role in the formation of coat protein II vesicles, which mediate protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus. Mammals have two Sec16 isoforms: Sec16A, which is a longer primary ortholog of yeast Sec16, and Sec16B, which is a shorter distant ortholog. Previous studies have shown that Sec16B, as well as Sec16A, defines ER exit sites, where coat p...
متن کاملSec16A is critical for both conventional and unconventional secretion of CFTR
CFTR is a transmembrane protein that reaches the cell surface via the conventional Golgi mediated secretion pathway. Interestingly, ER-to-Golgi blockade or ER stress induces alternative GRASP-mediated, Golgi-bypassing unconventional trafficking of wild-type CFTR and the disease-causing ΔF508-CFTR, which has folding and trafficking defects. Here, we show that Sec16A, the key regulator of convent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 33 20 شماره
صفحات -
تاریخ انتشار 2014