Time-resolved tryptophan fluorescence anisotropy investigation of bacteriophage M13 coat protein in micelles and mixed bilayers.
نویسندگان
چکیده
Coat protein of bacteriophage M13 is examined in micelles and vesicles by time-resolved tryptophan fluorescence and anisotropy decay measurements and circular dichroism experiments. Circular dichroism indicates that the coat protein has alpha-helix (60%) and beta-structure (28%) in 700 mM sodium dodecyl sulfate micelles and predominantly beta-structure (94%) in mixed dimyristoylphosphatidylcholine/dimyristoylphosphatidic acid (80/20 w/w) small unilamellar vesicles. The fluorescence decay at 344 nm of the single tryptophan in the coat protein after excitation at 295 or 300 nm is a triple exponential. In the micelles the anisotropy decay is a double exponential. A short, temperature-independent correlation time of 0.5 +/- 0.2 ns reflects a rapid depolarization process within the coat protein. The overall rotation of the coat protein-detergent complex is observed in the decay as a longer correlation time of 9.8 +/- 0.5 ns (at 20 degrees C) and has a temperature dependence that satisfies the Stokes-Einstein relation. In vesicles at all lipid to protein molar ratios in the range from 20 to 410, the calculated order parameter is constant with a value of 0.7 +/- 0.1 from 10 to 40 degrees C, although the lipids undergo the gel to liquid-crystalline phase transition. The longer correlation time decreases gradually on increasing temperature. This effect probably arises from an increasing segmental mobility within the coat protein. The results are consistent with a model in which the coat protein has a beta-structure and the tryptophan indole rings do not experience the motion of the lipids in the bilayer because of protein-protein aggregation.
منابع مشابه
Analysis of time-resolved fluorescence anisotropy in lipid-protein systems. II. Application to tryptophan fluorescence of bacteriophage M13 coat protein incorporated in phospholipid bilayers.
The subnanosecond fluorescence and motional dynamics of the tryptophan residue in the bacteriophage M13 coat protein incorporated within pure dioleoylphosphatidylcholine (DOPC) as well as dioleoylphosphatidylcholine/dioleoylphosphatidylglycerol (DOPC/DOPG) and dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) bilayers (80/20 w/w) with various L/P ratio have been investi...
متن کاملSpin-label ESR of bacteriophage M13 coat protein in mixed lipid bilayers. Characterization of molecular selectivity of charged phospholipids for the bacteriophage M13 coat protein in lipid bilayers.
Bacteriophage M13 major coat protein has been incorporated at different lipid/protein ratios in lipid bilayers consisting of various ratios of dimyristoylphosphatidylcholine (DMPC) to dimyristoylphosphatidylglycerol (DMPG). Spin-label ESR experiments were performed with phospholipids labeled at the C-14 position of the sn-2 chain. For M13 coat protein recombinants with DMPC alone, the relative ...
متن کاملProbing folded and unfolded states of outer membrane protein a with steady-state and time-resolved tryptophan fluorescence.
Steady-state and time-resolved fluorescence measurements on each of five native tryptophan residues in full-length and truncated variants of E. coli outer-membrane protein A (OmpA) have been made in folded and denatured states. Tryptophan singlet excited-state lifetimes are multiexponential and vary among the residues. In addition, substantial increases in excited-state lifetimes accompany OmpA...
متن کاملTime-Resolved Fluorescence Anisotropics of Diphenylhexatriene and Perylene in Solvents and Lipid Bilayers Obtained from Multifrequency Phase-Modulation Fluorometry
Time-resolved decays of fluorescence anisotropy were obtained from frequency-domain measurements of the phase angle difference between the parallel and perpendicular components of the polarized emission and the ratio of the modulated amplitudes. These data were measured at modulation frequencies ranging from 1 to 200 MHz. To demonstrate the general applicability of this method, we describe the ...
متن کاملESR of spin-labeled bacteriophage M13 coat protein in mixed phospholipid bilayers.
Bacteriophage M13 major coat protein was spin-labeled with a nitroxide derivative of iodoacetamide, preferentially at the single methionine that is located in the hydrophobic region of the protein. The spin-labeled protein was incorporated at different lipid-to-protein ratios in phospholipid bilayers composed of dimyristoylphosphatidylglycerol (DMPG), dimyristoylphosphatidylcholine (DMPC), or t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 26 19 شماره
صفحات -
تاریخ انتشار 1987