Adaptive Neural Network Tracking Control for a Class of SISO Affine Nonlinear Uncertain Systems

نویسندگان

  • Hui Hu
  • Peng Guo
چکیده

A direct adaptive neural network tracking control scheme is presented for a class of SISO affine nonlinear uncertain systems. Uncertainties meet the match conditions. Parameters in neural networks are updated using a gradient descent method which designed in order to minimize a quadratic cost function of the error between the unknown ideal implicit controller and the used neural networks controller. No robustifying control term is used in controller. The convergence of adaptive parameters and tracking error and the boundedness of all states in the corresponding closed-loop system are demonstrated by Lyapunov stability theorem.Simulation results illustrate the availability of this method .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...

متن کامل

Neural Network Adaptive Control for a Class of Matched SISO Nonlinear Uncertain Systems With Zero Dynamics

The paper presents a direct adaptive tracking control scheme for a class of matched SISO affine nonlinear uncertain systems with zero dynamic using neural network. Through neural network approximation, neural network is used as the emulator of the unknown ideal controller. A quadratic cost function of the error between the unknown ideal controller and the used neural network controller is minim...

متن کامل

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

Decentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks

In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...

متن کامل

Adaptive Neural Network Approach for a Class of Uncertain Non-affine Nonlinear Systems

The paper proposes a new output feedback adaptive tracking control scheme using neural network for a class of uncertain non-affine nonlinear systems that only the system output variables can be measured. The scheme adopts low-pass filter to transform non-affine nonlinear systems into affine in the pseudo-input dynamics. No state observer is employed and few adapting parameters to be tuned and L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012