Evaluating the small deviation probabilities for subordinated Lévy processes

نویسندگان

  • Werner Linde
  • Zhan Shi
چکیده

We study the small deviation problem for a class of symmetric Lévy processes, namely, subordinated Lévy processes. These processes can be represented as W ◦A, where W is a standard Brownian motion, and A is a subordinator independent of W . Under some mild general assumption, we give precise estimates (up to a constant multiple in the logarithmic scale) of the small deviation probabilities. These probabilities, also evaluated under the conditional probability given the subordination process A, are formulated in terms of the Laplace exponent of A. The results are furthermore extended to processes subordinated to the fractional Brownian motion of arbitrary Hurst index.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thorin Classes of Lévy Processes and Their Transforms

Thorin classes T (R+),κ > 0, of infinitely divisible distributions on R+ are defined and characterized. Poisson, Karlin and Bessel transforms of Thorin classes are investigated. The extended Thorin classes T (κ)(Rd), κ > 0, are also considered. Canonical representation and selfdecomposability properties of the Thorin subordinated Gaussian Lévy processes are discussed. As an example, the subordi...

متن کامل

Small deviations of general Lévy processes

We study the small deviation problem logP(supt∈[0,1] |Xt| 6 ε), as ε → 0, for general Lévy processes X . The techniques enable us to determine the asymptotic rate for general real-valued Lévy processes, which we demonstrate with many examples. As a particular consequence, we show that a Lévy process with non-vanishing Gaussian component has the same (strong) asymptotic small deviation rate as t...

متن کامل

Lévy-copula-driven Financial Processes

Abstract. This paper proposes a general non-Gaussian Ornstein-Uhlenbeck model for a joint financial process based on marginal Lévy measures joined by a Lévy copula. Simulated processes then result from choices of marginal measures and Lévy copulas, with resulting statistics and inferences. Selected for analysis are the 3/2-stable and Gamma marginal Lévy measures, along with Clayton, Gumbel, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005