Role of troponin I phosphorylation in protein kinase C-mediated enhanced contractile performance of rat myocytes.

نویسندگان

  • Margaret V Westfall
  • Andrea R Borton
چکیده

Our goal was to define the role of phosphorylated cardiac troponin-I in the adult myocyte contractile performance response to activated protein kinase C. In agreement with earlier work, endothelin enhanced both adult rat myocyte contractile performance and cardiac troponin-I phosphorylation. Protein kinase C participated in both responses. The role of cardiac troponin-I phosphorylation in the contractile function response to protein kinase C was further investigated using gene transfer into myocytes of troponin-I isoforms/mutants lacking one or more phosphorylation sites previously identified in purified cardiac troponin-I. Sarcomeric replacement with slow skeletal troponin-I-abrogated protein kinase C-mediated troponin-I phosphorylation. In functional studies, endothelin slowed relaxation in myocytes expressing slow skeletal troponin-I, while the relaxation rate increased in myocytes expressing cardiac troponin-I. Based on these results, acceleration of myocyte relaxation during protein kinase C activation largely depended on cardiac troponin-I phosphorylation. Experiments with troponin-I isoform chimeras provided evidence that phosphorylation sites in the amino portion of cardiac troponin I-mediated the protein kinase C acceleration of relaxation. The cardiac troponin-I Thr-144 phosphorylation site identified in earlier biochemical studies was not significantly phosphorylated during the acute contractile response. Thus, amino-terminal protein kinase C-dependent phosphorylation sites in cardiac troponin-I are likely responsible for the accelerated relaxation observed in adult myocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to exa...

متن کامل

Troponin I chimera analysis of the cardiac myofilament tension response to protein kinase A.

Viral-mediated gene transfer of troponin I (TnI) isoforms and chimeras into adult rat cardiac myocytes was used to investigate the role TnI domains play in the myofilament tension response to protein kinase A (PKA). In myocytes expressing endogenous cardiac TnI (cTnI), PKA phosphorylated TnI and myosin-binding protein C and decreased the Ca2+ sensitivity of myofilament tension. In marked contra...

متن کامل

The cAMP binding protein Epac regulates cardiac myofilament function.

In the heart, cAMP is a key regulator of excitation-contraction coupling and its biological effects are mainly associated with the activity of protein kinase A (PKA). The aim of this study was to investigate the contribution of the cAMP-binding protein Epac (Exchange protein directly activated by cAMP) in the regulation of the contractile properties of rat ventricular cardiac myocytes. We repor...

متن کامل

In vivo -adrenergic responses and troponin I phosphorylation: anesthesia interactions

MacGowan, Guy A., Jennifer Rager, Sanjeev G. Shroff, and Michael A. Mathier. In vivo -adrenergic responses and troponin I phosphorylation: anesthesia interactions. J Appl Physiol 98: 1163– 1170, 2005. First published December 3, 2004; doi:10.1152/japplphysiol.00959.2004.—The mechanisms by which -adrenergic stimulation of the heart in vivo can cause contractile dysfunction are not well understoo...

متن کامل

Protein Kinase D Selectively Targets Cardiac Troponin I and Regulates Myofilament Ca Sensitivity in Ventricular Myocytes

Protein kinase D (PKD) is a serine/threonine kinase with emerging myocardial functions; in skinned adult rat ventricular myocytes (ARVMs), recombinant PKD catalytic domain phosphorylates cardiac troponin I at Ser22/Ser23 and reduces myofilament Ca sensitivity. We used adenoviral gene transfer to determine the effects of full-length PKD on protein phosphorylation, sarcomere shortening and [Ca ]i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 36  شماره 

صفحات  -

تاریخ انتشار 2003