Faster Deep Q-learning using Neural Episodic Control

نویسندگان

  • Daichi Nishio
  • Satoshi Yamane
چکیده

The research on deep reinforcement learning which estimates Q-value by deep learning has been attracted the interest of researchers recently. In deep reinforcement learning, it is important to efficiently learn the experiences that an agent has collected by exploring environment. In this research, we propose NEC2DQN that improves learning speed of a poor sample efficiency algorithm such as DQN by using good one such as NEC at the beginning of learning. We show it is able to learn faster than Double DQN or N-step DQN in the experiments of Pong.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Episodic Value Iteration for Model-based Meta-Reinforcement Learning

We present a new deep meta reinforcement learner, which we call Deep Episodic Value Iteration (DEVI). DEVI uses a deep neural network to learn a similarity metric for a non-parametric model-based reinforcement learning algorithm. Our model is trained end-to-end via back-propagation. Despite being trained using the model-free Q-learning objective, we show that DEVI’s model-based internal structu...

متن کامل

Neural Episodic Control

Deep reinforcement learning methods attain super-human performance in a wide range of environments. Such methods are grossly inefficient, often taking orders of magnitudes more data than humans to achieve reasonable performance. We propose Neural Episodic Control: a deep reinforcement learning agent that is able to rapidly assimilate new experiences and act upon them. Our agent uses a semi-tabu...

متن کامل

Episodic Exploration for Deep Deterministic Policies for Starcraft Micromanagement

We consider scenarios from the real-time strategy game StarCraft as benchmarks for reinforcement learning algorithms. We focus on micromanagement, that is, the short-term, low-level control of team members during a battle. We propose several scenarios that are challenging for reinforcement learning algorithms because the stateaction space is very large, and there is no obvious feature represent...

متن کامل

Episodic Exploration for Deep Deterministic Policies: An Application to StarCraft Micromanagement Tasks

We consider scenarios from the real-time strategy game StarCraft as new benchmarks for reinforcement learning algorithms. We propose micromanagement tasks, which present the problem of the short-term, low-level control of army members during a battle. From a reinforcement learning point of view, these scenarios are challenging because the stateaction space is very large, and because there is no...

متن کامل

Continuous Deep Q-Learning with Model-based Acceleration

Model-free reinforcement learning has been successfully applied to a range of challenging problems, and has recently been extended to handle large neural network policies and value functions. However, the sample complexity of modelfree algorithms, particularly when using highdimensional function approximators, tends to limit their applicability to physical systems. In this paper, we explore alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.01968  شماره 

صفحات  -

تاریخ انتشار 2018