Electrical networks, electrical Lie algebras and Lie groups of finite Dynkin type

نویسنده

  • Yi Su
چکیده

Curtis-Ingerman-Morrow studied the space of circular planar electrical networks, and classified all possible response matrices for such networks. Lam and Pylyavskyy found a Lie group EL2n whose positive part (EL2n)≥0 naturally acts on the circular planar electrical network via some combinatorial description, where the action is inspired by the star-triangle transformation of the electrical networks. The Lie algebra el2n is semisimple and isomorphic to the symplectic algebra. In the end of their paper, they suggest a generalization of electrical Lie algebras to all finite Dynkin types. We give the structure of the type B electrical Lie algebra eb2n . The nonnegative part (EB2n)≥0 of the corresponding Lie group conjecturally acts on a class of “mirror symmetric circular planar electrical networks”. This class of networks has interesting combinatorial properties. Finally, we mention some partial results for type C and D electrical Lie algebras, where an analogous story needs to be developed. Résumé Curtis, Ingerman et Morrow ont étudié l’espace des réseaux électriques circulaires plans et ont classifié toutes les matrices de réponses possibles pour ces réseaux. Lam et Pylyavskyy ont trouvé un groupe de Lie EL2n dont la partie positive (EL2n)≥0 agit naturellement sur le réseau électrique circulaire plan par une description combinatoire, où l’action est inspirée par la transformation étoile vers triangle des réseaux électriques. L’algèbre de Lie el2n est semi-simple et isomorphe à l’algèbre symplectique. A la fin de leur article, ils proposent une généralisation des algèbres de Lie électriques pour tous les types de Dynkin finis. Nous donnons la structure de l’algèbre de Lie électrique eb2n du type B. La partie positive (EB2n)≥0 du groupe de Lie correspondant agit conjecturalement sur une famille de ”miroirs réseaux électriques circulaires symétriques plans”. Cette famille de réseaux a des propriétés combinatoires intéressantes. Nous donnons enfin quelques résultats partiels de l’algèbres de Lie électrique du type C et du type D, où une étude analogue doit être développée.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fiber bundles and Lie algebras of top spaces

In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.

متن کامل

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Constructing Simply Laced Lie Algebras from Extremal Elements

For any finite graph Γ and any field K of characteristic unequal to 2 we construct an algebraic variety X over K whose K-points parameterise K-Lie algebras generated by extremal elements, corresponding to the vertices of the graph, with prescribed commutation relations, corresponding to the non-edges. After that, we study the case where Γ is a connected, simply laced Dynkin diagram of finite or...

متن کامل

On permutably complemented subalgebras of finite dimensional Lie algebras

Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...

متن کامل

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014