Solution of Monotone Complementarity and General Convex Programming Problems Using a Modified Potential Reduction Interior Point Method

نویسندگان

  • Kuo-Ling Huang
  • Sanjay Mehrotra
چکیده

We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear polynomial-time convergence properties while achieving practical performance. When compared with a mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadratic programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. We also find that iOptimize seems to detect infeasibility more reliably than general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved infeasible-interior-point algorithm for linear complementarity problems

We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...

متن کامل

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

Interior-Point Methods

The modern era of interior-point methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadratic programming, semide nite programming, and nonconvex and nonlinear problems, have reached varyin...

متن کامل

An interior point potential reduction method for constrained equations

We study the problem of solving a constrained system of nonlinear equations by a combination of the classical damped Newton method for (unconstrained) smooth equations and the recent interior point potential reduction methods for linear programs, linear and nonlin-ear complementarity problems. In general, constrained equations provide a uniied formulation for many mathematical programming probl...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2017