Importance Sampling Monte - Carlo Algorithms for the Calculation ofDempster - Shafer Belief

نویسنده

  • Nic Wilson
چکیده

This paper presents importance sampling Monte-Carlo algorithms for the calculation of belief functions combination. When the connict between the evidence is not very high a simple Monte-Carlo algorithm can produce good quality estimations. For the case of highly connicting evidences a Markov chain Monte-Carlo algorithm was also proposed. In this paper, a new class of importance sampling based algorithms is presented. The performance of them is compared by experimental tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Chain Monte-Carlo Algorithms for the Calculation of Dempster-Shafer Belief

A simple Monte-Carlo algorithm can be used to calculate Dempster-Shafer belief very efficiently unless the conflict between the evidences is very high. This paper introduces and explores Markov Chain Monte-Carlo algorithms for calculating Dempster-Shafer belief that can also work well when the conflict is high.

متن کامل

A Monte-Carlo Algorithm for Dempster-Shafer Belief

A very computationally-efficient MonteCarlo algorithm for the calculation of Dempster-Shafer belief is described. If Bel is the combination using Dempster’s Rule of belief functions Bel1, . . . ,Belm then, for subset b of the frame Θ, Bel(b) can be calculated in time linear in |Θ| and m (given that the weight of conflict is bounded). The algorithm can also be used to improve the complexity of t...

متن کامل

Infinite-Dimensional Monte Carlo Integration

In mathematics, Monte Carlo integration is a technique for numerical integration using random numbers and a a particular Monte Carlo method numerically computes the Riemann integral. Whereas other algorithms usually evaluate the integrand at a regular grid, Monte Carlo randomly chooses points at which the integrand is evaluated. This method is particularly useful for higher-dimensional integral...

متن کامل

Efficient Calculation of Risk Measures by Importance Sampling – the Heavy Tailed Case

Computation of extreme quantiles and tail-based risk measures using standard Monte Carlo simulation can be inefficient. A method to speed up computations is provided by importance sampling. We show that importance sampling algorithms, designed for efficient tail probability estimation, can significantly improve Monte Carlo estimators of tail-based risk measures. In the heavy-tailed setting, whe...

متن کامل

A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques

A class of Monte Carlo algorithms for probability propagation in belief networks is given. The simulation is based on a two steps procedure. The rst one is a node deletion technique to calculate the 'a posteriori' distribution on a variable, with the particularity that when exact computations are too costly, they are carried out in an approximate way. In the second step, the computations done i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996