A Binary Pso-aco Hybrid Algorithm for Feature Subset Selection

نویسنده

  • Neeta Agarwal
چکیده

Feature Selection is the process of selecting a subset of features available, allowing a certain objective function to be optimized, from the data containing noisy,irrelevant and redundant features. This paper presents a novel feature selection method that is based on hybridization of ACO with a binary PSO to obtain excellent properties of two algorithms by synthesizing them and aims at achieving similar or better results than PSObased feature selection and ACO-based feature selection. The fundamental idea of this hybrid approach is that the PSO is employed at the beginning of the searching process,as PSO has the ability to eplore the search space .The best feature subset having best gbest that minimizes the classification error is selected.The searching process is switched to the ACO algorithm; the best subsets found by PSO is the initial population of ACO. From the features of the gbest having m features each ant start with randomly produce m-p feature subset .ACO works as a local search,wherein,ants apply pheromone-guided mechanism to refine the positions found by particles in PSO stage.In PSACO ,a simple pheromone-guided mechanism of ACO is proposed to apply as local search.Thus ACO helps PSO process for rapidly and effectively attaining the optimal and near optimal solution(subset). Proposed algorithm is applied to a biometric feature selection problem of left index knuckle dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Artificial Life Feature Selection Techniques for Prostrate Cancer Diagnosis Using TRUS Images

This paper presents two novel feature selection techniques for the purpose of prostate tissue characterization based on Trans-rectal Ultrasound (TRUS) images. First, suspected cancerous regions of interest (ROIs) are identified from the segmented TRUS images using Gabor filters. Next, second and higher order statistical texture features are constructed for these ROIs. Furthermore, a representat...

متن کامل

Feature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm

This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a  structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the  measure...

متن کامل

A Hybrid PSO/ACO Algorithm for Discovering Classification Rules in Data Mining

We have previously proposed a hybrid particle swarm optimisation/ant colony optimisation (PSO/ACO) algorithm for the discovery of classification rules. Unlike a conventional PSO algorithm, this hybrid algorithm can directly cope with nominal attributes, without converting nominal values into binary numbers in a preprocessing phase. PSO/ACO2 also directly deals with both continuous and nominal a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017