Borrelia burgdorferi oxidative stress regulator BosR directly represses lipoproteins primarily expressed in the tick during mammalian infection.

نویسندگان

  • Peng Wang
  • Poonam Dadhwal
  • Zhihui Cheng
  • Michael R Zianni
  • Yasuko Rikihisa
  • Fang Ting Liang
  • Xin Li
چکیده

Differential gene expression is a key strategy adopted by the Lyme disease spirochaete, Borrelia burgdorferi, for adaptation and survival in the mammalian host and the tick vector. Many B. burgdorferi surface lipoproteins fall into two distinct groups according to their expression patterns: one group primarily expressed in the tick and the other group primarily expressed in the mammal. Here, we show that the Fur homologue in this bacterium, also known as Borrelia oxidative stress regulator (BosR), is required for repression of outer surface protein A (OspA) and OspD in the mammal. Furthermore, BosR binds directly to sequences upstream of the ospAB operon and the ospD gene through recognition of palindromic motifs similar to those recognized by other Fur homologues but with a 1 bp variation in the spacer length. Putative BosR binding sites have been identified upstream of 156 B. burgdorferi genes. Some of these genes share the same expression pattern as ospA and ospD. Most notably, 12 (67%) of the 18 genes previously identified in a genome-wide microarray study to be most significantly repressed in the mammal are among the putative BosR regulon. These data indicate that BosR may directly repress transcription of many genes that are downregulated in the mammal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Borrelia oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activator.

The ability of a pathogen to cause infection depends on successful colonization of the host, which, in turn, requires adaptation to various challenges presented by that host. For example, host immune cells use a variety of mechanisms to control infection by bacterial pathogens, including the production of bactericidal reactive oxygen species. Prokaryotic and eukaryotic cells have developed ways...

متن کامل

Borrelia burgdorferi regulates expression of complement regulator-acquiring surface protein 1 during the mammal-tick infection cycle.

During the natural mammal-tick infection cycle, the Lyme disease spirochete Borrelia burgdorferi comes into contact with components of the alternative complement pathway. B. burgdorferi, like many other human pathogens, has evolved the immune evasion strategy of binding two host-derived fluid-phase regulators of complement, factor H and factor H-like protein 1 (FHL-1). The borrelial complement ...

متن کامل

Metal-dependent gene regulation in the causative agent of Lyme disease

Borrelia burgdorferi (Bb) is the causative agent of Lyme disease transmitted to humans by ticks of the Ixodes spp. Bb is a unique bacterial pathogen because it does not require iron (Fe(2+)) for its metabolism. Bb encodes a ferritin-like Dps homolog called NapA (also called BicA), which can bind Fe or copper (Cu(2+)), and a manganese (Mn(2+)) transport protein, Borrelia metal transporter A (Bmt...

متن کامل

Cyclic Di-GMP receptor PlzA controls virulence gene expression through RpoS in Borrelia burgdorferi.

As an obligate pathogen, the Lyme disease spirochete Borrelia burgdorferi has a streamlined genome that encodes only two two-component signal transduction systems, Hk1-Rrp1 and Hk2-Rrp2 (in addition to CheA-CheY systems). The output of Hk1-Rrp1 is the production of the second messenger cyclic di-GMP (c-di-GMP), which is indispensable for B. burgdorferi to survive in the tick vector. The output ...

متن کامل

BosR (BB0647) Controls the RpoN-RpoS Regulatory Pathway and Virulence Expression in Borrelia burgdorferi by a Novel DNA-Binding Mechanism

In Borrelia burgdorferi (Bb), the Lyme disease spirochete, the alternative σ factor σ⁵⁴ (RpoN) directly activates transcription of another alternative σ factor, σ(S) (RpoS) which, in turn, controls the expression of virulence-associated membrane lipoproteins. As is customary in σ⁵⁴-dependent gene control, a putative NtrC-like enhancer-binding protein, Rrp2, is required to activate the RpoN-RpoS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 89 6  شماره 

صفحات  -

تاریخ انتشار 2013